Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-gabssd.nf | |- ( ph -> A. x ph ) | |
| bj-gabssd.c | |- ( ph -> A = B ) | ||
| bj-gabssd.f | |- ( ph -> ( ps -> ch ) ) | ||
| Assertion | bj-gabssd | |- ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-gabssd.nf | |- ( ph -> A. x ph ) | |
| 2 | bj-gabssd.c | |- ( ph -> A = B ) | |
| 3 | bj-gabssd.f | |- ( ph -> ( ps -> ch ) ) | |
| 4 | 2 3 | jca | |- ( ph -> ( A = B /\ ( ps -> ch ) ) ) | 
| 5 | 1 4 | alrimih | |- ( ph -> A. x ( A = B /\ ( ps -> ch ) ) ) | 
| 6 | bj-gabss |  |-  ( A. x ( A = B /\ ( ps -> ch ) ) -> {{ A | x | ps }} C_ {{ B | x | ch }} ) | |
| 7 | 5 6 | syl |  |-  ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} ) |