Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-gabssd.nf | |- ( ph -> A. x ph ) |
|
bj-gabssd.c | |- ( ph -> A = B ) |
||
bj-gabssd.f | |- ( ph -> ( ps -> ch ) ) |
||
Assertion | bj-gabssd | |- ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-gabssd.nf | |- ( ph -> A. x ph ) |
|
2 | bj-gabssd.c | |- ( ph -> A = B ) |
|
3 | bj-gabssd.f | |- ( ph -> ( ps -> ch ) ) |
|
4 | 2 3 | jca | |- ( ph -> ( A = B /\ ( ps -> ch ) ) ) |
5 | 1 4 | alrimih | |- ( ph -> A. x ( A = B /\ ( ps -> ch ) ) ) |
6 | bj-gabss | |- ( A. x ( A = B /\ ( ps -> ch ) ) -> {{ A | x | ps }} C_ {{ B | x | ch }} ) |
|
7 | 5 6 | syl | |- ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} ) |