Metamath Proof Explorer


Theorem bj-gabssd

Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabssd.nf
|- ( ph -> A. x ph )
bj-gabssd.c
|- ( ph -> A = B )
bj-gabssd.f
|- ( ph -> ( ps -> ch ) )
Assertion bj-gabssd
|- ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} )

Proof

Step Hyp Ref Expression
1 bj-gabssd.nf
 |-  ( ph -> A. x ph )
2 bj-gabssd.c
 |-  ( ph -> A = B )
3 bj-gabssd.f
 |-  ( ph -> ( ps -> ch ) )
4 2 3 jca
 |-  ( ph -> ( A = B /\ ( ps -> ch ) ) )
5 1 4 alrimih
 |-  ( ph -> A. x ( A = B /\ ( ps -> ch ) ) )
6 bj-gabss
 |-  ( A. x ( A = B /\ ( ps -> ch ) ) -> {{ A | x | ps }} C_ {{ B | x | ch }} )
7 5 6 syl
 |-  ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} )