Metamath Proof Explorer


Theorem bj-gabssd

Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabssd.nf ( 𝜑 → ∀ 𝑥 𝜑 )
bj-gabssd.c ( 𝜑𝐴 = 𝐵 )
bj-gabssd.f ( 𝜑 → ( 𝜓𝜒 ) )
Assertion bj-gabssd ( 𝜑 → { 𝐴𝑥𝜓 } ⊆ { 𝐵𝑥𝜒 } )

Proof

Step Hyp Ref Expression
1 bj-gabssd.nf ( 𝜑 → ∀ 𝑥 𝜑 )
2 bj-gabssd.c ( 𝜑𝐴 = 𝐵 )
3 bj-gabssd.f ( 𝜑 → ( 𝜓𝜒 ) )
4 2 3 jca ( 𝜑 → ( 𝐴 = 𝐵 ∧ ( 𝜓𝜒 ) ) )
5 1 4 alrimih ( 𝜑 → ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜓𝜒 ) ) )
6 bj-gabss ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜓𝜒 ) ) → { 𝐴𝑥𝜓 } ⊆ { 𝐵𝑥𝜒 } )
7 5 6 syl ( 𝜑 → { 𝐴𝑥𝜓 } ⊆ { 𝐵𝑥𝜒 } )