Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-gabssd.nf | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| bj-gabssd.c | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| bj-gabssd.f | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | ||
| Assertion | bj-gabssd | ⊢ ( 𝜑 → { 𝐴 ∣ 𝑥 ∣ 𝜓 } ⊆ { 𝐵 ∣ 𝑥 ∣ 𝜒 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-gabssd.nf | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | bj-gabssd.c | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | bj-gabssd.f | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 4 | 2 3 | jca | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∧ ( 𝜓 → 𝜒 ) ) ) | 
| 5 | 1 4 | alrimih | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜓 → 𝜒 ) ) ) | 
| 6 | bj-gabss | ⊢ ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜓 → 𝜒 ) ) → { 𝐴 ∣ 𝑥 ∣ 𝜓 } ⊆ { 𝐵 ∣ 𝑥 ∣ 𝜒 } ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → { 𝐴 ∣ 𝑥 ∣ 𝜓 } ⊆ { 𝐵 ∣ 𝑥 ∣ 𝜒 } ) |