Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-gabssd.nf | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
bj-gabssd.c | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
bj-gabssd.f | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | ||
Assertion | bj-gabssd | ⊢ ( 𝜑 → { 𝐴 ∣ 𝑥 ∣ 𝜓 } ⊆ { 𝐵 ∣ 𝑥 ∣ 𝜒 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-gabssd.nf | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
2 | bj-gabssd.c | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
3 | bj-gabssd.f | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
4 | 2 3 | jca | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∧ ( 𝜓 → 𝜒 ) ) ) |
5 | 1 4 | alrimih | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜓 → 𝜒 ) ) ) |
6 | bj-gabss | ⊢ ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜓 → 𝜒 ) ) → { 𝐴 ∣ 𝑥 ∣ 𝜓 } ⊆ { 𝐵 ∣ 𝑥 ∣ 𝜒 } ) | |
7 | 5 6 | syl | ⊢ ( 𝜑 → { 𝐴 ∣ 𝑥 ∣ 𝜓 } ⊆ { 𝐵 ∣ 𝑥 ∣ 𝜒 } ) |