Metamath Proof Explorer


Theorem bj-gabeqd

Description: Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabeqd.nf ( 𝜑 → ∀ 𝑥 𝜑 )
bj-gabeqd.c ( 𝜑𝐴 = 𝐵 )
bj-gabeqd.f ( 𝜑 → ( 𝜓𝜒 ) )
Assertion bj-gabeqd ( 𝜑 → { 𝐴𝑥𝜓 } = { 𝐵𝑥𝜒 } )

Proof

Step Hyp Ref Expression
1 bj-gabeqd.nf ( 𝜑 → ∀ 𝑥 𝜑 )
2 bj-gabeqd.c ( 𝜑𝐴 = 𝐵 )
3 bj-gabeqd.f ( 𝜑 → ( 𝜓𝜒 ) )
4 3 biimpd ( 𝜑 → ( 𝜓𝜒 ) )
5 1 2 4 bj-gabssd ( 𝜑 → { 𝐴𝑥𝜓 } ⊆ { 𝐵𝑥𝜒 } )
6 2 eqcomd ( 𝜑𝐵 = 𝐴 )
7 3 biimprd ( 𝜑 → ( 𝜒𝜓 ) )
8 1 6 7 bj-gabssd ( 𝜑 → { 𝐵𝑥𝜒 } ⊆ { 𝐴𝑥𝜓 } )
9 5 8 eqssd ( 𝜑 → { 𝐴𝑥𝜓 } = { 𝐵𝑥𝜒 } )