Description: Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-gabeqd.nf | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| bj-gabeqd.c | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| bj-gabeqd.f | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | bj-gabeqd | ⊢ ( 𝜑 → { 𝐴 ∣ 𝑥 ∣ 𝜓 } = { 𝐵 ∣ 𝑥 ∣ 𝜒 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-gabeqd.nf | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | bj-gabeqd.c | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | bj-gabeqd.f | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 3 | biimpd | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | 
| 5 | 1 2 4 | bj-gabssd | ⊢ ( 𝜑 → { 𝐴 ∣ 𝑥 ∣ 𝜓 } ⊆ { 𝐵 ∣ 𝑥 ∣ 𝜒 } ) | 
| 6 | 2 | eqcomd | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) | 
| 7 | 3 | biimprd | ⊢ ( 𝜑 → ( 𝜒 → 𝜓 ) ) | 
| 8 | 1 6 7 | bj-gabssd | ⊢ ( 𝜑 → { 𝐵 ∣ 𝑥 ∣ 𝜒 } ⊆ { 𝐴 ∣ 𝑥 ∣ 𝜓 } ) | 
| 9 | 5 8 | eqssd | ⊢ ( 𝜑 → { 𝐴 ∣ 𝑥 ∣ 𝜓 } = { 𝐵 ∣ 𝑥 ∣ 𝜒 } ) |