Description: Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-gabeqd.nf | |- ( ph -> A. x ph ) |
|
bj-gabeqd.c | |- ( ph -> A = B ) |
||
bj-gabeqd.f | |- ( ph -> ( ps <-> ch ) ) |
||
Assertion | bj-gabeqd | |- ( ph -> {{ A | x | ps }} = {{ B | x | ch }} ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-gabeqd.nf | |- ( ph -> A. x ph ) |
|
2 | bj-gabeqd.c | |- ( ph -> A = B ) |
|
3 | bj-gabeqd.f | |- ( ph -> ( ps <-> ch ) ) |
|
4 | 3 | biimpd | |- ( ph -> ( ps -> ch ) ) |
5 | 1 2 4 | bj-gabssd | |- ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} ) |
6 | 2 | eqcomd | |- ( ph -> B = A ) |
7 | 3 | biimprd | |- ( ph -> ( ch -> ps ) ) |
8 | 1 6 7 | bj-gabssd | |- ( ph -> {{ B | x | ch }} C_ {{ A | x | ps }} ) |
9 | 5 8 | eqssd | |- ( ph -> {{ A | x | ps }} = {{ B | x | ch }} ) |