Step |
Hyp |
Ref |
Expression |
1 |
|
bj-gabeqis.c |
|- ( x = y -> A = B ) |
2 |
|
bj-gabeqis.f |
|- ( x = y -> ( ph <-> ps ) ) |
3 |
1
|
adantl |
|- ( ( u = v /\ x = y ) -> A = B ) |
4 |
|
simpl |
|- ( ( u = v /\ x = y ) -> u = v ) |
5 |
3 4
|
eqeq12d |
|- ( ( u = v /\ x = y ) -> ( A = u <-> B = v ) ) |
6 |
2
|
adantl |
|- ( ( u = v /\ x = y ) -> ( ph <-> ps ) ) |
7 |
5 6
|
anbi12d |
|- ( ( u = v /\ x = y ) -> ( ( A = u /\ ph ) <-> ( B = v /\ ps ) ) ) |
8 |
7
|
cbvexdvaw |
|- ( u = v -> ( E. x ( A = u /\ ph ) <-> E. y ( B = v /\ ps ) ) ) |
9 |
8
|
cbvabv |
|- { u | E. x ( A = u /\ ph ) } = { v | E. y ( B = v /\ ps ) } |
10 |
|
df-bj-gab |
|- {{ A | x | ph }} = { u | E. x ( A = u /\ ph ) } |
11 |
|
df-bj-gab |
|- {{ B | y | ps }} = { v | E. y ( B = v /\ ps ) } |
12 |
9 10 11
|
3eqtr4i |
|- {{ A | x | ph }} = {{ B | y | ps }} |