Metamath Proof Explorer


Theorem bj-gabeqis

Description: Equality of generalized class abstractions, with implicit substitution. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabeqis.c
|- ( x = y -> A = B )
bj-gabeqis.f
|- ( x = y -> ( ph <-> ps ) )
Assertion bj-gabeqis
|- {{ A | x | ph }} = {{ B | y | ps }}

Proof

Step Hyp Ref Expression
1 bj-gabeqis.c
 |-  ( x = y -> A = B )
2 bj-gabeqis.f
 |-  ( x = y -> ( ph <-> ps ) )
3 1 adantl
 |-  ( ( u = v /\ x = y ) -> A = B )
4 simpl
 |-  ( ( u = v /\ x = y ) -> u = v )
5 3 4 eqeq12d
 |-  ( ( u = v /\ x = y ) -> ( A = u <-> B = v ) )
6 2 adantl
 |-  ( ( u = v /\ x = y ) -> ( ph <-> ps ) )
7 5 6 anbi12d
 |-  ( ( u = v /\ x = y ) -> ( ( A = u /\ ph ) <-> ( B = v /\ ps ) ) )
8 7 cbvexdvaw
 |-  ( u = v -> ( E. x ( A = u /\ ph ) <-> E. y ( B = v /\ ps ) ) )
9 8 cbvabv
 |-  { u | E. x ( A = u /\ ph ) } = { v | E. y ( B = v /\ ps ) }
10 df-bj-gab
 |-  {{ A | x | ph }} = { u | E. x ( A = u /\ ph ) }
11 df-bj-gab
 |-  {{ B | y | ps }} = { v | E. y ( B = v /\ ps ) }
12 9 10 11 3eqtr4i
 |-  {{ A | x | ph }} = {{ B | y | ps }}