| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-gabeqis.c |  |-  ( x = y -> A = B ) | 
						
							| 2 |  | bj-gabeqis.f |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 3 | 1 | adantl |  |-  ( ( u = v /\ x = y ) -> A = B ) | 
						
							| 4 |  | simpl |  |-  ( ( u = v /\ x = y ) -> u = v ) | 
						
							| 5 | 3 4 | eqeq12d |  |-  ( ( u = v /\ x = y ) -> ( A = u <-> B = v ) ) | 
						
							| 6 | 2 | adantl |  |-  ( ( u = v /\ x = y ) -> ( ph <-> ps ) ) | 
						
							| 7 | 5 6 | anbi12d |  |-  ( ( u = v /\ x = y ) -> ( ( A = u /\ ph ) <-> ( B = v /\ ps ) ) ) | 
						
							| 8 | 7 | cbvexdvaw |  |-  ( u = v -> ( E. x ( A = u /\ ph ) <-> E. y ( B = v /\ ps ) ) ) | 
						
							| 9 | 8 | cbvabv |  |-  { u | E. x ( A = u /\ ph ) } = { v | E. y ( B = v /\ ps ) } | 
						
							| 10 |  | df-bj-gab |  |-  {{ A | x | ph }} = { u | E. x ( A = u /\ ph ) } | 
						
							| 11 |  | df-bj-gab |  |-  {{ B | y | ps }} = { v | E. y ( B = v /\ ps ) } | 
						
							| 12 | 9 10 11 | 3eqtr4i |  |-  {{ A | x | ph }} = {{ B | y | ps }} |