| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-elgab.nf |  |-  ( ph -> A. x ph ) | 
						
							| 2 |  | bj-elgab.nfa |  |-  ( ph -> F/_ x A ) | 
						
							| 3 |  | bj-elgab.ex |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | bj-elgab.is |  |-  ( ph -> ( E. x ( A = B /\ ps ) <-> ch ) ) | 
						
							| 5 |  | df-bj-gab |  |-  {{ B | x | ps }} = { y | E. x ( B = y /\ ps ) } | 
						
							| 6 | 5 | eleq2i |  |-  ( A e. {{ B | x | ps }} <-> A e. { y | E. x ( B = y /\ ps ) } ) | 
						
							| 7 | 1 | adantr |  |-  ( ( ph /\ y = A ) -> A. x ph ) | 
						
							| 8 |  | nfcvd |  |-  ( F/_ x A -> F/_ x y ) | 
						
							| 9 |  | id |  |-  ( F/_ x A -> F/_ x A ) | 
						
							| 10 | 8 9 | nfeqd |  |-  ( F/_ x A -> F/ x y = A ) | 
						
							| 11 | 10 | nf5rd |  |-  ( F/_ x A -> ( y = A -> A. x y = A ) ) | 
						
							| 12 | 2 11 | syl |  |-  ( ph -> ( y = A -> A. x y = A ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( ph /\ y = A ) -> A. x y = A ) | 
						
							| 14 |  | 19.26 |  |-  ( A. x ( ph /\ y = A ) <-> ( A. x ph /\ A. x y = A ) ) | 
						
							| 15 | 7 13 14 | sylanbrc |  |-  ( ( ph /\ y = A ) -> A. x ( ph /\ y = A ) ) | 
						
							| 16 |  | eqeq2 |  |-  ( y = A -> ( B = y <-> B = A ) ) | 
						
							| 17 |  | eqcom |  |-  ( B = A <-> A = B ) | 
						
							| 18 | 16 17 | bitrdi |  |-  ( y = A -> ( B = y <-> A = B ) ) | 
						
							| 19 | 18 | anbi1d |  |-  ( y = A -> ( ( B = y /\ ps ) <-> ( A = B /\ ps ) ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ph /\ y = A ) -> ( ( B = y /\ ps ) <-> ( A = B /\ ps ) ) ) | 
						
							| 21 | 15 20 | exbidh |  |-  ( ( ph /\ y = A ) -> ( E. x ( B = y /\ ps ) <-> E. x ( A = B /\ ps ) ) ) | 
						
							| 22 | 21 | ex |  |-  ( ph -> ( y = A -> ( E. x ( B = y /\ ps ) <-> E. x ( A = B /\ ps ) ) ) ) | 
						
							| 23 | 22 | alrimiv |  |-  ( ph -> A. y ( y = A -> ( E. x ( B = y /\ ps ) <-> E. x ( A = B /\ ps ) ) ) ) | 
						
							| 24 |  | elabgt |  |-  ( ( A e. V /\ A. y ( y = A -> ( E. x ( B = y /\ ps ) <-> E. x ( A = B /\ ps ) ) ) ) -> ( A e. { y | E. x ( B = y /\ ps ) } <-> E. x ( A = B /\ ps ) ) ) | 
						
							| 25 | 3 23 24 | syl2anc |  |-  ( ph -> ( A e. { y | E. x ( B = y /\ ps ) } <-> E. x ( A = B /\ ps ) ) ) | 
						
							| 26 | 25 4 | bitrd |  |-  ( ph -> ( A e. { y | E. x ( B = y /\ ps ) } <-> ch ) ) | 
						
							| 27 | 6 26 | bitrid |  |-  ( ph -> ( A e. {{ B | x | ps }} <-> ch ) ) |