| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-elgab.nf | ⊢ ( 𝜑  →  ∀ 𝑥 𝜑 ) | 
						
							| 2 |  | bj-elgab.nfa | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 3 |  | bj-elgab.ex | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | bj-elgab.is | ⊢ ( 𝜑  →  ( ∃ 𝑥 ( 𝐴  =  𝐵  ∧  𝜓 )  ↔  𝜒 ) ) | 
						
							| 5 |  | df-bj-gab | ⊢ { 𝐵  ∣  𝑥  ∣  𝜓 }  =  { 𝑦  ∣  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) } | 
						
							| 6 | 5 | eleq2i | ⊢ ( 𝐴  ∈  { 𝐵  ∣  𝑥  ∣  𝜓 }  ↔  𝐴  ∈  { 𝑦  ∣  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) } ) | 
						
							| 7 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  ∀ 𝑥 𝜑 ) | 
						
							| 8 |  | nfcvd | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 9 |  | id | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 10 | 8 9 | nfeqd | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝑦  =  𝐴 ) | 
						
							| 11 | 10 | nf5rd | ⊢ ( Ⅎ 𝑥 𝐴  →  ( 𝑦  =  𝐴  →  ∀ 𝑥 𝑦  =  𝐴 ) ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  ( 𝑦  =  𝐴  →  ∀ 𝑥 𝑦  =  𝐴 ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  ∀ 𝑥 𝑦  =  𝐴 ) | 
						
							| 14 |  | 19.26 | ⊢ ( ∀ 𝑥 ( 𝜑  ∧  𝑦  =  𝐴 )  ↔  ( ∀ 𝑥 𝜑  ∧  ∀ 𝑥 𝑦  =  𝐴 ) ) | 
						
							| 15 | 7 13 14 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  ∀ 𝑥 ( 𝜑  ∧  𝑦  =  𝐴 ) ) | 
						
							| 16 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐵  =  𝑦  ↔  𝐵  =  𝐴 ) ) | 
						
							| 17 |  | eqcom | ⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 ) | 
						
							| 18 | 16 17 | bitrdi | ⊢ ( 𝑦  =  𝐴  →  ( 𝐵  =  𝑦  ↔  𝐴  =  𝐵 ) ) | 
						
							| 19 | 18 | anbi1d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝐵  =  𝑦  ∧  𝜓 )  ↔  ( 𝐴  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  ( ( 𝐵  =  𝑦  ∧  𝜓 )  ↔  ( 𝐴  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 21 | 15 20 | exbidh | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐴 )  →  ( ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 )  ↔  ∃ 𝑥 ( 𝐴  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝜑  →  ( 𝑦  =  𝐴  →  ( ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 )  ↔  ∃ 𝑥 ( 𝐴  =  𝐵  ∧  𝜓 ) ) ) ) | 
						
							| 23 | 22 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑦 ( 𝑦  =  𝐴  →  ( ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 )  ↔  ∃ 𝑥 ( 𝐴  =  𝐵  ∧  𝜓 ) ) ) ) | 
						
							| 24 |  | elabgt | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑦 ( 𝑦  =  𝐴  →  ( ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 )  ↔  ∃ 𝑥 ( 𝐴  =  𝐵  ∧  𝜓 ) ) ) )  →  ( 𝐴  ∈  { 𝑦  ∣  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) }  ↔  ∃ 𝑥 ( 𝐴  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 25 | 3 23 24 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  { 𝑦  ∣  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) }  ↔  ∃ 𝑥 ( 𝐴  =  𝐵  ∧  𝜓 ) ) ) | 
						
							| 26 | 25 4 | bitrd | ⊢ ( 𝜑  →  ( 𝐴  ∈  { 𝑦  ∣  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) }  ↔  𝜒 ) ) | 
						
							| 27 | 6 26 | bitrid | ⊢ ( 𝜑  →  ( 𝐴  ∈  { 𝐵  ∣  𝑥  ∣  𝜓 }  ↔  𝜒 ) ) |