Step |
Hyp |
Ref |
Expression |
1 |
|
bj-elgab.nf |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
2 |
|
bj-elgab.nfa |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
3 |
|
bj-elgab.ex |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
bj-elgab.is |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝐴 = 𝐵 ∧ 𝜓 ) ↔ 𝜒 ) ) |
5 |
|
df-bj-gab |
⊢ { 𝐵 ∣ 𝑥 ∣ 𝜓 } = { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) } |
6 |
5
|
eleq2i |
⊢ ( 𝐴 ∈ { 𝐵 ∣ 𝑥 ∣ 𝜓 } ↔ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) } ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ∀ 𝑥 𝜑 ) |
8 |
|
nfcvd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 ) |
9 |
|
id |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝐴 ) |
10 |
8 9
|
nfeqd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
11 |
10
|
nf5rd |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑦 = 𝐴 → ∀ 𝑥 𝑦 = 𝐴 ) ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → ( 𝑦 = 𝐴 → ∀ 𝑥 𝑦 = 𝐴 ) ) |
13 |
12
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ∀ 𝑥 𝑦 = 𝐴 ) |
14 |
|
19.26 |
⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝑦 = 𝐴 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝑦 = 𝐴 ) ) |
15 |
7 13 14
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ∀ 𝑥 ( 𝜑 ∧ 𝑦 = 𝐴 ) ) |
16 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐴 ) ) |
17 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
18 |
16 17
|
bitrdi |
⊢ ( 𝑦 = 𝐴 → ( 𝐵 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
19 |
18
|
anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐵 = 𝑦 ∧ 𝜓 ) ↔ ( 𝐴 = 𝐵 ∧ 𝜓 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ( ( 𝐵 = 𝑦 ∧ 𝜓 ) ↔ ( 𝐴 = 𝐵 ∧ 𝜓 ) ) ) |
21 |
15 20
|
exbidh |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ( ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝐴 = 𝐵 ∧ 𝜓 ) ) ) |
22 |
21
|
ex |
⊢ ( 𝜑 → ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝐴 = 𝐵 ∧ 𝜓 ) ) ) ) |
23 |
22
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝐴 = 𝐵 ∧ 𝜓 ) ) ) ) |
24 |
|
elabgt |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝐴 = 𝐵 ∧ 𝜓 ) ) ) ) → ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) } ↔ ∃ 𝑥 ( 𝐴 = 𝐵 ∧ 𝜓 ) ) ) |
25 |
3 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) } ↔ ∃ 𝑥 ( 𝐴 = 𝐵 ∧ 𝜓 ) ) ) |
26 |
25 4
|
bitrd |
⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) } ↔ 𝜒 ) ) |
27 |
6 26
|
syl5bb |
⊢ ( 𝜑 → ( 𝐴 ∈ { 𝐵 ∣ 𝑥 ∣ 𝜓 } ↔ 𝜒 ) ) |