Metamath Proof Explorer


Theorem bj-elgab

Description: Elements of a generalized class abstraction. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-elgab.nf φ x φ
bj-elgab.nfa φ _ x A
bj-elgab.ex φ A V
bj-elgab.is φ x A = B ψ χ
Assertion bj-elgab φ A B | x | ψ χ

Proof

Step Hyp Ref Expression
1 bj-elgab.nf φ x φ
2 bj-elgab.nfa φ _ x A
3 bj-elgab.ex φ A V
4 bj-elgab.is φ x A = B ψ χ
5 df-bj-gab B | x | ψ = y | x B = y ψ
6 5 eleq2i A B | x | ψ A y | x B = y ψ
7 1 adantr φ y = A x φ
8 nfcvd _ x A _ x y
9 id _ x A _ x A
10 8 9 nfeqd _ x A x y = A
11 10 nf5rd _ x A y = A x y = A
12 2 11 syl φ y = A x y = A
13 12 imp φ y = A x y = A
14 19.26 x φ y = A x φ x y = A
15 7 13 14 sylanbrc φ y = A x φ y = A
16 eqeq2 y = A B = y B = A
17 eqcom B = A A = B
18 16 17 bitrdi y = A B = y A = B
19 18 anbi1d y = A B = y ψ A = B ψ
20 19 adantl φ y = A B = y ψ A = B ψ
21 15 20 exbidh φ y = A x B = y ψ x A = B ψ
22 21 ex φ y = A x B = y ψ x A = B ψ
23 22 alrimiv φ y y = A x B = y ψ x A = B ψ
24 elabgt A V y y = A x B = y ψ x A = B ψ A y | x B = y ψ x A = B ψ
25 3 23 24 syl2anc φ A y | x B = y ψ x A = B ψ
26 25 4 bitrd φ A y | x B = y ψ χ
27 6 26 bitrid φ A B | x | ψ χ