Metamath Proof Explorer


Theorem bj-gabima

Description: Generalized class abstraction as a direct image.

TODO: improve the support lemmas elimag and fvelima to nonfreeness hypothesis (and for the latter, biconditional). (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabima.nf φxφ
bj-gabima.nff φ_xF
bj-gabima.fun φFunF
bj-gabima.dm φx|ψdomF
Assertion bj-gabima Could not format assertion : No typesetting found for |- ( ph -> {{ ( F ` x ) | x | ps }} = ( F " { x | ps } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-gabima.nf φxφ
2 bj-gabima.nff φ_xF
3 bj-gabima.fun φFunF
4 bj-gabima.dm φx|ψdomF
5 nfcvd φ_xy
6 vex yV
7 6 a1i φyV
8 df-rex zx|ψFz=yzzx|ψFz=y
9 8 a1i φzx|ψFz=yzzx|ψFz=y
10 eqcom y=FzFz=y
11 df-clab zx|ψzxψ
12 11 bicomi zxψzx|ψ
13 10 12 anbi12ci y=Fzzxψzx|ψFz=y
14 13 exbii zy=Fzzxψzzx|ψFz=y
15 14 a1i φzy=Fzzxψzzx|ψFz=y
16 1 nf5i xφ
17 nfcv _xy
18 17 a1i φ_xy
19 nfcv _xz
20 19 a1i φ_xz
21 2 20 nffvd φ_xFz
22 18 21 nfeqd φxy=Fz
23 nfs1v xzxψ
24 23 a1i φxzxψ
25 22 24 nfand φxy=Fzzxψ
26 fveq2 z=xFz=Fx
27 26 eqeq2d z=xy=Fzy=Fx
28 sbequ12r z=xzxψψ
29 27 28 anbi12d z=xy=Fzzxψy=Fxψ
30 29 a1i φz=xy=Fzzxψy=Fxψ
31 16 25 30 cbvexdw φzy=Fzzxψxy=Fxψ
32 9 15 31 3bitr2rd φxy=Fxψzx|ψFz=y
33 1 5 7 32 bj-elgab Could not format ( ph -> ( y e. {{ ( F ` x ) | x | ps }} <-> E. z e. { x | ps } ( F ` z ) = y ) ) : No typesetting found for |- ( ph -> ( y e. {{ ( F ` x ) | x | ps }} <-> E. z e. { x | ps } ( F ` z ) = y ) ) with typecode |-
34 3 funfnd φFFndomF
35 34 4 fvelimabd φyFx|ψzx|ψFz=y
36 33 35 bitr4d Could not format ( ph -> ( y e. {{ ( F ` x ) | x | ps }} <-> y e. ( F " { x | ps } ) ) ) : No typesetting found for |- ( ph -> ( y e. {{ ( F ` x ) | x | ps }} <-> y e. ( F " { x | ps } ) ) ) with typecode |-
37 36 eqrdv Could not format ( ph -> {{ ( F ` x ) | x | ps }} = ( F " { x | ps } ) ) : No typesetting found for |- ( ph -> {{ ( F ` x ) | x | ps }} = ( F " { x | ps } ) ) with typecode |-