Metamath Proof Explorer


Theorem bj-gabeqis

Description: Equality of generalized class abstractions, with implicit substitution. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabeqis.c x = y A = B
bj-gabeqis.f x = y φ ψ
Assertion bj-gabeqis A | x | φ = B | y | ψ

Proof

Step Hyp Ref Expression
1 bj-gabeqis.c x = y A = B
2 bj-gabeqis.f x = y φ ψ
3 1 adantl u = v x = y A = B
4 simpl u = v x = y u = v
5 3 4 eqeq12d u = v x = y A = u B = v
6 2 adantl u = v x = y φ ψ
7 5 6 anbi12d u = v x = y A = u φ B = v ψ
8 7 cbvexdvaw u = v x A = u φ y B = v ψ
9 8 cbvabv u | x A = u φ = v | y B = v ψ
10 df-bj-gab A | x | φ = u | x A = u φ
11 df-bj-gab B | y | ψ = v | y B = v ψ
12 9 10 11 3eqtr4i A | x | φ = B | y | ψ