| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-gabeqis.c | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  𝐵 ) | 
						
							| 2 |  | bj-gabeqis.f | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 | 1 | adantl | ⊢ ( ( 𝑢  =  𝑣  ∧  𝑥  =  𝑦 )  →  𝐴  =  𝐵 ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑢  =  𝑣  ∧  𝑥  =  𝑦 )  →  𝑢  =  𝑣 ) | 
						
							| 5 | 3 4 | eqeq12d | ⊢ ( ( 𝑢  =  𝑣  ∧  𝑥  =  𝑦 )  →  ( 𝐴  =  𝑢  ↔  𝐵  =  𝑣 ) ) | 
						
							| 6 | 2 | adantl | ⊢ ( ( 𝑢  =  𝑣  ∧  𝑥  =  𝑦 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 7 | 5 6 | anbi12d | ⊢ ( ( 𝑢  =  𝑣  ∧  𝑥  =  𝑦 )  →  ( ( 𝐴  =  𝑢  ∧  𝜑 )  ↔  ( 𝐵  =  𝑣  ∧  𝜓 ) ) ) | 
						
							| 8 | 7 | cbvexdvaw | ⊢ ( 𝑢  =  𝑣  →  ( ∃ 𝑥 ( 𝐴  =  𝑢  ∧  𝜑 )  ↔  ∃ 𝑦 ( 𝐵  =  𝑣  ∧  𝜓 ) ) ) | 
						
							| 9 | 8 | cbvabv | ⊢ { 𝑢  ∣  ∃ 𝑥 ( 𝐴  =  𝑢  ∧  𝜑 ) }  =  { 𝑣  ∣  ∃ 𝑦 ( 𝐵  =  𝑣  ∧  𝜓 ) } | 
						
							| 10 |  | df-bj-gab | ⊢ { 𝐴  ∣  𝑥  ∣  𝜑 }  =  { 𝑢  ∣  ∃ 𝑥 ( 𝐴  =  𝑢  ∧  𝜑 ) } | 
						
							| 11 |  | df-bj-gab | ⊢ { 𝐵  ∣  𝑦  ∣  𝜓 }  =  { 𝑣  ∣  ∃ 𝑦 ( 𝐵  =  𝑣  ∧  𝜓 ) } | 
						
							| 12 | 9 10 11 | 3eqtr4i | ⊢ { 𝐴  ∣  𝑥  ∣  𝜑 }  =  { 𝐵  ∣  𝑦  ∣  𝜓 } |