Step |
Hyp |
Ref |
Expression |
1 |
|
bj-gabeqis.c |
⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) |
2 |
|
bj-gabeqis.f |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
1
|
adantl |
⊢ ( ( 𝑢 = 𝑣 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) |
4 |
|
simpl |
⊢ ( ( 𝑢 = 𝑣 ∧ 𝑥 = 𝑦 ) → 𝑢 = 𝑣 ) |
5 |
3 4
|
eqeq12d |
⊢ ( ( 𝑢 = 𝑣 ∧ 𝑥 = 𝑦 ) → ( 𝐴 = 𝑢 ↔ 𝐵 = 𝑣 ) ) |
6 |
2
|
adantl |
⊢ ( ( 𝑢 = 𝑣 ∧ 𝑥 = 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( ( 𝑢 = 𝑣 ∧ 𝑥 = 𝑦 ) → ( ( 𝐴 = 𝑢 ∧ 𝜑 ) ↔ ( 𝐵 = 𝑣 ∧ 𝜓 ) ) ) |
8 |
7
|
cbvexdvaw |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ( 𝐴 = 𝑢 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝐵 = 𝑣 ∧ 𝜓 ) ) ) |
9 |
8
|
cbvabv |
⊢ { 𝑢 ∣ ∃ 𝑥 ( 𝐴 = 𝑢 ∧ 𝜑 ) } = { 𝑣 ∣ ∃ 𝑦 ( 𝐵 = 𝑣 ∧ 𝜓 ) } |
10 |
|
df-bj-gab |
⊢ { 𝐴 ∣ 𝑥 ∣ 𝜑 } = { 𝑢 ∣ ∃ 𝑥 ( 𝐴 = 𝑢 ∧ 𝜑 ) } |
11 |
|
df-bj-gab |
⊢ { 𝐵 ∣ 𝑦 ∣ 𝜓 } = { 𝑣 ∣ ∃ 𝑦 ( 𝐵 = 𝑣 ∧ 𝜓 ) } |
12 |
9 10 11
|
3eqtr4i |
⊢ { 𝐴 ∣ 𝑥 ∣ 𝜑 } = { 𝐵 ∣ 𝑦 ∣ 𝜓 } |