Metamath Proof Explorer


Theorem bj-gabeqis

Description: Equality of generalized class abstractions, with implicit substitution. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabeqis.c ( 𝑥 = 𝑦𝐴 = 𝐵 )
bj-gabeqis.f ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion bj-gabeqis { 𝐴𝑥𝜑 } = { 𝐵𝑦𝜓 }

Proof

Step Hyp Ref Expression
1 bj-gabeqis.c ( 𝑥 = 𝑦𝐴 = 𝐵 )
2 bj-gabeqis.f ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 1 adantl ( ( 𝑢 = 𝑣𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
4 simpl ( ( 𝑢 = 𝑣𝑥 = 𝑦 ) → 𝑢 = 𝑣 )
5 3 4 eqeq12d ( ( 𝑢 = 𝑣𝑥 = 𝑦 ) → ( 𝐴 = 𝑢𝐵 = 𝑣 ) )
6 2 adantl ( ( 𝑢 = 𝑣𝑥 = 𝑦 ) → ( 𝜑𝜓 ) )
7 5 6 anbi12d ( ( 𝑢 = 𝑣𝑥 = 𝑦 ) → ( ( 𝐴 = 𝑢𝜑 ) ↔ ( 𝐵 = 𝑣𝜓 ) ) )
8 7 cbvexdvaw ( 𝑢 = 𝑣 → ( ∃ 𝑥 ( 𝐴 = 𝑢𝜑 ) ↔ ∃ 𝑦 ( 𝐵 = 𝑣𝜓 ) ) )
9 8 cbvabv { 𝑢 ∣ ∃ 𝑥 ( 𝐴 = 𝑢𝜑 ) } = { 𝑣 ∣ ∃ 𝑦 ( 𝐵 = 𝑣𝜓 ) }
10 df-bj-gab { 𝐴𝑥𝜑 } = { 𝑢 ∣ ∃ 𝑥 ( 𝐴 = 𝑢𝜑 ) }
11 df-bj-gab { 𝐵𝑦𝜓 } = { 𝑣 ∣ ∃ 𝑦 ( 𝐵 = 𝑣𝜓 ) }
12 9 10 11 3eqtr4i { 𝐴𝑥𝜑 } = { 𝐵𝑦𝜓 }