Metamath Proof Explorer


Theorem bj-gabeqd

Description: Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabeqd.nf φ x φ
bj-gabeqd.c φ A = B
bj-gabeqd.f φ ψ χ
Assertion bj-gabeqd Could not format assertion : No typesetting found for |- ( ph -> {{ A | x | ps }} = {{ B | x | ch }} ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-gabeqd.nf φ x φ
2 bj-gabeqd.c φ A = B
3 bj-gabeqd.f φ ψ χ
4 3 biimpd φ ψ χ
5 1 2 4 bj-gabssd Could not format ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} ) : No typesetting found for |- ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} ) with typecode |-
6 2 eqcomd φ B = A
7 3 biimprd φ χ ψ
8 1 6 7 bj-gabssd Could not format ( ph -> {{ B | x | ch }} C_ {{ A | x | ps }} ) : No typesetting found for |- ( ph -> {{ B | x | ch }} C_ {{ A | x | ps }} ) with typecode |-
9 5 8 eqssd Could not format ( ph -> {{ A | x | ps }} = {{ B | x | ch }} ) : No typesetting found for |- ( ph -> {{ A | x | ps }} = {{ B | x | ch }} ) with typecode |-