Metamath Proof Explorer


Definition df-bj-oppc

Description: Define the negation (operation giving the opposite) on the set of extended complex numbers and the complex projective line (Riemann sphere). (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion df-bj-oppc
|- -cc = ( x e. ( CCbar u. CChat ) |-> if ( x = infty , infty , if ( x e. CC , ( iota_ y e. CC ( x +cc y ) = 0 ) , ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 coppcc
 |-  -cc
1 vx
 |-  x
2 cccbar
 |-  CCbar
3 ccchat
 |-  CChat
4 2 3 cun
 |-  ( CCbar u. CChat )
5 1 cv
 |-  x
6 cinfty
 |-  infty
7 5 6 wceq
 |-  x = infty
8 cc
 |-  CC
9 5 8 wcel
 |-  x e. CC
10 vy
 |-  y
11 caddcc
 |-  +cc
12 10 cv
 |-  y
13 5 12 11 co
 |-  ( x +cc y )
14 cc0
 |-  0
15 13 14 wceq
 |-  ( x +cc y ) = 0
16 15 10 8 crio
 |-  ( iota_ y e. CC ( x +cc y ) = 0 )
17 cinftyexpitau
 |-  inftyexpitau
18 chalf
 |-  1/2
19 c0r
 |-  0R
20 18 19 cop
 |-  <. 1/2 , 0R >.
21 5 20 11 co
 |-  ( x +cc <. 1/2 , 0R >. )
22 21 17 cfv
 |-  ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) )
23 9 16 22 cif
 |-  if ( x e. CC , ( iota_ y e. CC ( x +cc y ) = 0 ) , ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) ) )
24 7 6 23 cif
 |-  if ( x = infty , infty , if ( x e. CC , ( iota_ y e. CC ( x +cc y ) = 0 ) , ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) ) ) )
25 1 4 24 cmpt
 |-  ( x e. ( CCbar u. CChat ) |-> if ( x = infty , infty , if ( x e. CC , ( iota_ y e. CC ( x +cc y ) = 0 ) , ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) ) ) ) )
26 0 25 wceq
 |-  -cc = ( x e. ( CCbar u. CChat ) |-> if ( x = infty , infty , if ( x e. CC , ( iota_ y e. CC ( x +cc y ) = 0 ) , ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) ) ) ) )