Step |
Hyp |
Ref |
Expression |
0 |
|
coppcc |
|- -cc |
1 |
|
vx |
|- x |
2 |
|
cccbar |
|- CCbar |
3 |
|
ccchat |
|- CChat |
4 |
2 3
|
cun |
|- ( CCbar u. CChat ) |
5 |
1
|
cv |
|- x |
6 |
|
cinfty |
|- infty |
7 |
5 6
|
wceq |
|- x = infty |
8 |
|
cc |
|- CC |
9 |
5 8
|
wcel |
|- x e. CC |
10 |
|
vy |
|- y |
11 |
|
caddcc |
|- +cc |
12 |
10
|
cv |
|- y |
13 |
5 12 11
|
co |
|- ( x +cc y ) |
14 |
|
cc0 |
|- 0 |
15 |
13 14
|
wceq |
|- ( x +cc y ) = 0 |
16 |
15 10 8
|
crio |
|- ( iota_ y e. CC ( x +cc y ) = 0 ) |
17 |
|
cinftyexpitau |
|- inftyexpitau |
18 |
|
chalf |
|- 1/2 |
19 |
|
c0r |
|- 0R |
20 |
18 19
|
cop |
|- <. 1/2 , 0R >. |
21 |
5 20 11
|
co |
|- ( x +cc <. 1/2 , 0R >. ) |
22 |
21 17
|
cfv |
|- ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) ) |
23 |
9 16 22
|
cif |
|- if ( x e. CC , ( iota_ y e. CC ( x +cc y ) = 0 ) , ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) ) ) |
24 |
7 6 23
|
cif |
|- if ( x = infty , infty , if ( x e. CC , ( iota_ y e. CC ( x +cc y ) = 0 ) , ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) ) ) ) |
25 |
1 4 24
|
cmpt |
|- ( x e. ( CCbar u. CChat ) |-> if ( x = infty , infty , if ( x e. CC , ( iota_ y e. CC ( x +cc y ) = 0 ) , ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) ) ) ) ) |
26 |
0 25
|
wceq |
|- -cc = ( x e. ( CCbar u. CChat ) |-> if ( x = infty , infty , if ( x e. CC , ( iota_ y e. CC ( x +cc y ) = 0 ) , ( inftyexpitau ` ( x +cc <. 1/2 , 0R >. ) ) ) ) ) |