Step |
Hyp |
Ref |
Expression |
0 |
|
coppcc |
ā¢ -āĢ
|
1 |
|
vx |
ā¢ š„ |
2 |
|
cccbar |
ā¢ āĢ
|
3 |
|
ccchat |
ā¢ āĢ |
4 |
2 3
|
cun |
ā¢ ( āĢ
āŖ āĢ ) |
5 |
1
|
cv |
ā¢ š„ |
6 |
|
cinfty |
ā¢ ā |
7 |
5 6
|
wceq |
ā¢ š„ = ā |
8 |
|
cc |
ā¢ ā |
9 |
5 8
|
wcel |
ā¢ š„ ā ā |
10 |
|
vy |
ā¢ š¦ |
11 |
|
caddcc |
ā¢ +āĢ
|
12 |
10
|
cv |
ā¢ š¦ |
13 |
5 12 11
|
co |
ā¢ ( š„ +āĢ
š¦ ) |
14 |
|
cc0 |
ā¢ 0 |
15 |
13 14
|
wceq |
ā¢ ( š„ +āĢ
š¦ ) = 0 |
16 |
15 10 8
|
crio |
ā¢ ( ā© š¦ ā ā ( š„ +āĢ
š¦ ) = 0 ) |
17 |
|
cinftyexpitau |
ā¢ +āeiĻ |
18 |
|
chalf |
ā¢ 1/2 |
19 |
|
c0r |
ā¢ 0R |
20 |
18 19
|
cop |
ā¢ āØ 1/2 , 0R ā© |
21 |
5 20 11
|
co |
ā¢ ( š„ +āĢ
āØ 1/2 , 0R ā© ) |
22 |
21 17
|
cfv |
ā¢ ( +āeiĻ ā ( š„ +āĢ
āØ 1/2 , 0R ā© ) ) |
23 |
9 16 22
|
cif |
ā¢ if ( š„ ā ā , ( ā© š¦ ā ā ( š„ +āĢ
š¦ ) = 0 ) , ( +āeiĻ ā ( š„ +āĢ
āØ 1/2 , 0R ā© ) ) ) |
24 |
7 6 23
|
cif |
ā¢ if ( š„ = ā , ā , if ( š„ ā ā , ( ā© š¦ ā ā ( š„ +āĢ
š¦ ) = 0 ) , ( +āeiĻ ā ( š„ +āĢ
āØ 1/2 , 0R ā© ) ) ) ) |
25 |
1 4 24
|
cmpt |
ā¢ ( š„ ā ( āĢ
āŖ āĢ ) ā¦ if ( š„ = ā , ā , if ( š„ ā ā , ( ā© š¦ ā ā ( š„ +āĢ
š¦ ) = 0 ) , ( +āeiĻ ā ( š„ +āĢ
āØ 1/2 , 0R ā© ) ) ) ) ) |
26 |
0 25
|
wceq |
ā¢ -āĢ
= ( š„ ā ( āĢ
āŖ āĢ ) ā¦ if ( š„ = ā , ā , if ( š„ ā ā , ( ā© š¦ ā ā ( š„ +āĢ
š¦ ) = 0 ) , ( +āeiĻ ā ( š„ +āĢ
āØ 1/2 , 0R ā© ) ) ) ) ) |