Metamath Proof Explorer


Definition df-bj-oppc

Description: Define the negation (operation giving the opposite) on the set of extended complex numbers and the complex projective line (Riemann sphere). (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion df-bj-oppc -ā„‚Ģ… = ( š‘„ āˆˆ ( ā„‚Ģ… āˆŖ ā„‚Ģ‚ ) ā†¦ if ( š‘„ = āˆž , āˆž , if ( š‘„ āˆˆ ā„‚ , ( ā„© š‘¦ āˆˆ ā„‚ ( š‘„ +ā„‚Ģ… š‘¦ ) = 0 ) , ( +āˆžeiĻ„ ā€˜ ( š‘„ +ā„‚Ģ… āŸØ 1/2 , 0R āŸ© ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 coppcc āŠ¢ -ā„‚Ģ…
1 vx āŠ¢ š‘„
2 cccbar āŠ¢ ā„‚Ģ…
3 ccchat āŠ¢ ā„‚Ģ‚
4 2 3 cun āŠ¢ ( ā„‚Ģ… āˆŖ ā„‚Ģ‚ )
5 1 cv āŠ¢ š‘„
6 cinfty āŠ¢ āˆž
7 5 6 wceq āŠ¢ š‘„ = āˆž
8 cc āŠ¢ ā„‚
9 5 8 wcel āŠ¢ š‘„ āˆˆ ā„‚
10 vy āŠ¢ š‘¦
11 caddcc āŠ¢ +ā„‚Ģ…
12 10 cv āŠ¢ š‘¦
13 5 12 11 co āŠ¢ ( š‘„ +ā„‚Ģ… š‘¦ )
14 cc0 āŠ¢ 0
15 13 14 wceq āŠ¢ ( š‘„ +ā„‚Ģ… š‘¦ ) = 0
16 15 10 8 crio āŠ¢ ( ā„© š‘¦ āˆˆ ā„‚ ( š‘„ +ā„‚Ģ… š‘¦ ) = 0 )
17 cinftyexpitau āŠ¢ +āˆžeiĻ„
18 chalf āŠ¢ 1/2
19 c0r āŠ¢ 0R
20 18 19 cop āŠ¢ āŸØ 1/2 , 0R āŸ©
21 5 20 11 co āŠ¢ ( š‘„ +ā„‚Ģ… āŸØ 1/2 , 0R āŸ© )
22 21 17 cfv āŠ¢ ( +āˆžeiĻ„ ā€˜ ( š‘„ +ā„‚Ģ… āŸØ 1/2 , 0R āŸ© ) )
23 9 16 22 cif āŠ¢ if ( š‘„ āˆˆ ā„‚ , ( ā„© š‘¦ āˆˆ ā„‚ ( š‘„ +ā„‚Ģ… š‘¦ ) = 0 ) , ( +āˆžeiĻ„ ā€˜ ( š‘„ +ā„‚Ģ… āŸØ 1/2 , 0R āŸ© ) ) )
24 7 6 23 cif āŠ¢ if ( š‘„ = āˆž , āˆž , if ( š‘„ āˆˆ ā„‚ , ( ā„© š‘¦ āˆˆ ā„‚ ( š‘„ +ā„‚Ģ… š‘¦ ) = 0 ) , ( +āˆžeiĻ„ ā€˜ ( š‘„ +ā„‚Ģ… āŸØ 1/2 , 0R āŸ© ) ) ) )
25 1 4 24 cmpt āŠ¢ ( š‘„ āˆˆ ( ā„‚Ģ… āˆŖ ā„‚Ģ‚ ) ā†¦ if ( š‘„ = āˆž , āˆž , if ( š‘„ āˆˆ ā„‚ , ( ā„© š‘¦ āˆˆ ā„‚ ( š‘„ +ā„‚Ģ… š‘¦ ) = 0 ) , ( +āˆžeiĻ„ ā€˜ ( š‘„ +ā„‚Ģ… āŸØ 1/2 , 0R āŸ© ) ) ) ) )
26 0 25 wceq āŠ¢ -ā„‚Ģ… = ( š‘„ āˆˆ ( ā„‚Ģ… āˆŖ ā„‚Ģ‚ ) ā†¦ if ( š‘„ = āˆž , āˆž , if ( š‘„ āˆˆ ā„‚ , ( ā„© š‘¦ āˆˆ ā„‚ ( š‘„ +ā„‚Ģ… š‘¦ ) = 0 ) , ( +āˆžeiĻ„ ā€˜ ( š‘„ +ā„‚Ģ… āŸØ 1/2 , 0R āŸ© ) ) ) ) )