Metamath Proof Explorer


Definition df-bj-oppc

Description: Define the negation (operation giving the opposite) on the set of extended complex numbers and the complex projective line (Riemann sphere). (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion df-bj-oppc -ℂ̅ = ( 𝑥 ∈ ( ℂ̅ ∪ ℂ̂ ) ↦ if ( 𝑥 = ∞ , ∞ , if ( 𝑥 ∈ ℂ , ( 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 ) , ( +∞e ‘ ( 𝑥 +ℂ̅ ⟨ 1/2 , 0R ⟩ ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 coppcc -ℂ̅
1 vx 𝑥
2 cccbar ℂ̅
3 ccchat ℂ̂
4 2 3 cun ( ℂ̅ ∪ ℂ̂ )
5 1 cv 𝑥
6 cinfty
7 5 6 wceq 𝑥 = ∞
8 cc
9 5 8 wcel 𝑥 ∈ ℂ
10 vy 𝑦
11 caddcc +ℂ̅
12 10 cv 𝑦
13 5 12 11 co ( 𝑥 +ℂ̅ 𝑦 )
14 cc0 0
15 13 14 wceq ( 𝑥 +ℂ̅ 𝑦 ) = 0
16 15 10 8 crio ( 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 )
17 cinftyexpitau +∞e
18 chalf 1/2
19 c0r 0R
20 18 19 cop ⟨ 1/2 , 0R
21 5 20 11 co ( 𝑥 +ℂ̅ ⟨ 1/2 , 0R ⟩ )
22 21 17 cfv ( +∞e ‘ ( 𝑥 +ℂ̅ ⟨ 1/2 , 0R ⟩ ) )
23 9 16 22 cif if ( 𝑥 ∈ ℂ , ( 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 ) , ( +∞e ‘ ( 𝑥 +ℂ̅ ⟨ 1/2 , 0R ⟩ ) ) )
24 7 6 23 cif if ( 𝑥 = ∞ , ∞ , if ( 𝑥 ∈ ℂ , ( 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 ) , ( +∞e ‘ ( 𝑥 +ℂ̅ ⟨ 1/2 , 0R ⟩ ) ) ) )
25 1 4 24 cmpt ( 𝑥 ∈ ( ℂ̅ ∪ ℂ̂ ) ↦ if ( 𝑥 = ∞ , ∞ , if ( 𝑥 ∈ ℂ , ( 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 ) , ( +∞e ‘ ( 𝑥 +ℂ̅ ⟨ 1/2 , 0R ⟩ ) ) ) ) )
26 0 25 wceq -ℂ̅ = ( 𝑥 ∈ ( ℂ̅ ∪ ℂ̂ ) ↦ if ( 𝑥 = ∞ , ∞ , if ( 𝑥 ∈ ℂ , ( 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 ) , ( +∞e ‘ ( 𝑥 +ℂ̅ ⟨ 1/2 , 0R ⟩ ) ) ) ) )