| Step |
Hyp |
Ref |
Expression |
| 0 |
|
coppcc |
⊢ -ℂ̅ |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cccbar |
⊢ ℂ̅ |
| 3 |
|
ccchat |
⊢ ℂ̂ |
| 4 |
2 3
|
cun |
⊢ ( ℂ̅ ∪ ℂ̂ ) |
| 5 |
1
|
cv |
⊢ 𝑥 |
| 6 |
|
cinfty |
⊢ ∞ |
| 7 |
5 6
|
wceq |
⊢ 𝑥 = ∞ |
| 8 |
|
cc |
⊢ ℂ |
| 9 |
5 8
|
wcel |
⊢ 𝑥 ∈ ℂ |
| 10 |
|
vy |
⊢ 𝑦 |
| 11 |
|
caddcc |
⊢ +ℂ̅ |
| 12 |
10
|
cv |
⊢ 𝑦 |
| 13 |
5 12 11
|
co |
⊢ ( 𝑥 +ℂ̅ 𝑦 ) |
| 14 |
|
cc0 |
⊢ 0 |
| 15 |
13 14
|
wceq |
⊢ ( 𝑥 +ℂ̅ 𝑦 ) = 0 |
| 16 |
15 10 8
|
crio |
⊢ ( ℩ 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 ) |
| 17 |
|
cinftyexpitau |
⊢ +∞eiτ |
| 18 |
|
chalf |
⊢ 1/2 |
| 19 |
|
c0r |
⊢ 0R |
| 20 |
18 19
|
cop |
⊢ 〈 1/2 , 0R 〉 |
| 21 |
5 20 11
|
co |
⊢ ( 𝑥 +ℂ̅ 〈 1/2 , 0R 〉 ) |
| 22 |
21 17
|
cfv |
⊢ ( +∞eiτ ‘ ( 𝑥 +ℂ̅ 〈 1/2 , 0R 〉 ) ) |
| 23 |
9 16 22
|
cif |
⊢ if ( 𝑥 ∈ ℂ , ( ℩ 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 ) , ( +∞eiτ ‘ ( 𝑥 +ℂ̅ 〈 1/2 , 0R 〉 ) ) ) |
| 24 |
7 6 23
|
cif |
⊢ if ( 𝑥 = ∞ , ∞ , if ( 𝑥 ∈ ℂ , ( ℩ 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 ) , ( +∞eiτ ‘ ( 𝑥 +ℂ̅ 〈 1/2 , 0R 〉 ) ) ) ) |
| 25 |
1 4 24
|
cmpt |
⊢ ( 𝑥 ∈ ( ℂ̅ ∪ ℂ̂ ) ↦ if ( 𝑥 = ∞ , ∞ , if ( 𝑥 ∈ ℂ , ( ℩ 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 ) , ( +∞eiτ ‘ ( 𝑥 +ℂ̅ 〈 1/2 , 0R 〉 ) ) ) ) ) |
| 26 |
0 25
|
wceq |
⊢ -ℂ̅ = ( 𝑥 ∈ ( ℂ̅ ∪ ℂ̂ ) ↦ if ( 𝑥 = ∞ , ∞ , if ( 𝑥 ∈ ℂ , ( ℩ 𝑦 ∈ ℂ ( 𝑥 +ℂ̅ 𝑦 ) = 0 ) , ( +∞eiτ ‘ ( 𝑥 +ℂ̅ 〈 1/2 , 0R 〉 ) ) ) ) ) |