Metamath Proof Explorer


Definition df-bj-oppc

Description: Define the negation (operation giving the opposite) on the set of extended complex numbers and the complex projective line (Riemann sphere). (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion df-bj-oppc - = x ^ if x = if x ι y | x + y = 0 +∞e x + 1 2 0 𝑹

Detailed syntax breakdown

Step Hyp Ref Expression
0 coppcc class -
1 vx setvar x
2 cccbar class
3 ccchat class ^
4 2 3 cun class ^
5 1 cv setvar x
6 cinfty class
7 5 6 wceq wff x =
8 cc class
9 5 8 wcel wff x
10 vy setvar y
11 caddcc class +
12 10 cv setvar y
13 5 12 11 co class x + y
14 cc0 class 0
15 13 14 wceq wff x + y = 0
16 15 10 8 crio class ι y | x + y = 0
17 cinftyexpitau class +∞e
18 chalf class 1 2
19 c0r class 0 𝑹
20 18 19 cop class 1 2 0 𝑹
21 5 20 11 co class x + 1 2 0 𝑹
22 21 17 cfv class +∞e x + 1 2 0 𝑹
23 9 16 22 cif class if x ι y | x + y = 0 +∞e x + 1 2 0 𝑹
24 7 6 23 cif class if x = if x ι y | x + y = 0 +∞e x + 1 2 0 𝑹
25 1 4 24 cmpt class x ^ if x = if x ι y | x + y = 0 +∞e x + 1 2 0 𝑹
26 0 25 wceq wff - = x ^ if x = if x ι y | x + y = 0 +∞e x + 1 2 0 𝑹