Metamath Proof Explorer


Definition df-bj-oppc

Description: Define the negation (operation giving the opposite) on the set of extended complex numbers and the complex projective line (Riemann sphere). (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion df-bj-oppc -=x^ifx=ifxιy|x+y=0+∞ex+120𝑹

Detailed syntax breakdown

Step Hyp Ref Expression
0 coppcc class-
1 vx setvarx
2 cccbar class
3 ccchat class^
4 2 3 cun class^
5 1 cv setvarx
6 cinfty class
7 5 6 wceq wffx=
8 cc class
9 5 8 wcel wffx
10 vy setvary
11 caddcc class+
12 10 cv setvary
13 5 12 11 co classx+y
14 cc0 class0
15 13 14 wceq wffx+y=0
16 15 10 8 crio classιy|x+y=0
17 cinftyexpitau class+∞e
18 chalf class12
19 c0r class0𝑹
20 18 19 cop class120𝑹
21 5 20 11 co classx+120𝑹
22 21 17 cfv class+∞ex+120𝑹
23 9 16 22 cif classifxιy|x+y=0+∞ex+120𝑹
24 7 6 23 cif classifx=ifxιy|x+y=0+∞ex+120𝑹
25 1 4 24 cmpt classx^ifx=ifxιy|x+y=0+∞ex+120𝑹
26 0 25 wceq wff-=x^ifx=ifxιy|x+y=0+∞ex+120𝑹