Description: Definition of restricted nonfreeness. Informally, the proposition F/ x e. A ph means that ph ( x ) does not vary on A . (Contributed by BJ, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bj-rnf | |- ( F/ x e. A ph <-> ( E. x e. A ph -> A. x e. A ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vx | |- x |
|
| 1 | cA | |- A |
|
| 2 | wph | |- ph |
|
| 3 | 2 0 1 | wrnf | |- F/ x e. A ph |
| 4 | 2 0 1 | wrex | |- E. x e. A ph |
| 5 | 2 0 1 | wral | |- A. x e. A ph |
| 6 | 4 5 | wi | |- ( E. x e. A ph -> A. x e. A ph ) |
| 7 | 3 6 | wb | |- ( F/ x e. A ph <-> ( E. x e. A ph -> A. x e. A ph ) ) |