Metamath Proof Explorer


Definition df-bj-rnf

Description: Definition of restricted nonfreeness. Informally, the proposition F/ x e. A ph means that ph ( x ) does not vary on A . (Contributed by BJ, 19-Mar-2021)

Ref Expression
Assertion df-bj-rnf
|- ( F/ x e. A ph <-> ( E. x e. A ph -> A. x e. A ph ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 cA
 |-  A
2 wph
 |-  ph
3 2 0 1 wrnf
 |-  F/ x e. A ph
4 2 0 1 wrex
 |-  E. x e. A ph
5 2 0 1 wral
 |-  A. x e. A ph
6 4 5 wi
 |-  ( E. x e. A ph -> A. x e. A ph )
7 3 6 wb
 |-  ( F/ x e. A ph <-> ( E. x e. A ph -> A. x e. A ph ) )