Metamath Proof Explorer


Definition df-bj-rnf

Description: Definition of restricted nonfreeness. Informally, the proposition F/ x e. A ph means that ph ( x ) does not vary on A . (Contributed by BJ, 19-Mar-2021)

Ref Expression
Assertion df-bj-rnf ( Ⅎ 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 𝜑 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 cA 𝐴
2 wph 𝜑
3 2 0 1 wrnf 𝑥𝐴 𝜑
4 2 0 1 wrex 𝑥𝐴 𝜑
5 2 0 1 wral 𝑥𝐴 𝜑
6 4 5 wi ( ∃ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 𝜑 )
7 3 6 wb ( Ⅎ 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 𝜑 ) )