Metamath Proof Explorer


Definition df-bj-rnf

Description: Definition of restricted nonfreeness. Informally, the proposition F/ x e. A ph means that ph ( x ) does not vary on A . (Contributed by BJ, 19-Mar-2021)

Ref Expression
Assertion df-bj-rnf xAφxAφxAφ

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvarx
1 cA classA
2 wph wffφ
3 2 0 1 wrnf wffxAφ
4 2 0 1 wrex wffxAφ
5 2 0 1 wral wffxAφ
6 4 5 wi wffxAφxAφ
7 3 6 wb wffxAφxAφxAφ