Metamath Proof Explorer


Definition df-bj-rnf

Description: Definition of restricted nonfreeness. Informally, the proposition F/ x e. A ph means that ph ( x ) does not vary on A . (Contributed by BJ, 19-Mar-2021)

Ref Expression
Assertion df-bj-rnf x A φ x A φ x A φ

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvar x
1 cA class A
2 wph wff φ
3 2 0 1 wrnf wff x A φ
4 2 0 1 wrex wff x A φ
5 2 0 1 wral wff x A φ
6 4 5 wi wff x A φ x A φ
7 3 6 wb wff x A φ x A φ x A φ