Metamath Proof Explorer


Definition df-bj-rrbar

Description: Definition of the set of extended real numbers. This aims to replace df-xr . (Contributed by BJ, 29-Jun-2019)

Ref Expression
Assertion df-bj-rrbar
|- RRbar = ( RR u. { minfty , pinfty } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrbar
 |-  RRbar
1 cr
 |-  RR
2 cminfty
 |-  minfty
3 cpinfty
 |-  pinfty
4 2 3 cpr
 |-  { minfty , pinfty }
5 1 4 cun
 |-  ( RR u. { minfty , pinfty } )
6 0 5 wceq
 |-  RRbar = ( RR u. { minfty , pinfty } )