Metamath Proof Explorer


Definition df-bj-rrbar

Description: Definition of the set of extended real numbers. This aims to replace df-xr . (Contributed by BJ, 29-Jun-2019)

Ref Expression
Assertion df-bj-rrbar = -∞ +∞

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrbar class
1 cr class
2 cminfty class -∞
3 cpinfty class +∞
4 2 3 cpr class -∞ +∞
5 1 4 cun class -∞ +∞
6 0 5 wceq wff = -∞ +∞