Metamath Proof Explorer


Definition df-bj-rrbar

Description: Definition of the set of extended real numbers. This aims to replace df-xr . (Contributed by BJ, 29-Jun-2019)

Ref Expression
Assertion df-bj-rrbar ℝ̅ = ( ℝ ∪ { -∞ , +∞ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrbar ℝ̅
1 cr
2 cminfty -∞
3 cpinfty +∞
4 2 3 cpr { -∞ , +∞ }
5 1 4 cun ( ℝ ∪ { -∞ , +∞ } )
6 0 5 wceq ℝ̅ = ( ℝ ∪ { -∞ , +∞ } )