Metamath Proof Explorer


Definition df-cfil

Description: Define the set of Cauchy filters on a given extended metric space. A Cauchy filter is a filter on the set such that for every 0 < x there is an element of the filter whose metric diameter is less than x . (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion df-cfil
|- CauFil = ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccfil
 |-  CauFil
1 vd
 |-  d
2 cxmet
 |-  *Met
3 2 crn
 |-  ran *Met
4 3 cuni
 |-  U. ran *Met
5 vf
 |-  f
6 cfil
 |-  Fil
7 1 cv
 |-  d
8 7 cdm
 |-  dom d
9 8 cdm
 |-  dom dom d
10 9 6 cfv
 |-  ( Fil ` dom dom d )
11 vx
 |-  x
12 crp
 |-  RR+
13 vy
 |-  y
14 5 cv
 |-  f
15 13 cv
 |-  y
16 15 15 cxp
 |-  ( y X. y )
17 7 16 cima
 |-  ( d " ( y X. y ) )
18 cc0
 |-  0
19 cico
 |-  [,)
20 11 cv
 |-  x
21 18 20 19 co
 |-  ( 0 [,) x )
22 17 21 wss
 |-  ( d " ( y X. y ) ) C_ ( 0 [,) x )
23 22 13 14 wrex
 |-  E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x )
24 23 11 12 wral
 |-  A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x )
25 24 5 10 crab
 |-  { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) }
26 1 4 25 cmpt
 |-  ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } )
27 0 26 wceq
 |-  CauFil = ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } )