| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccfil |
|- CauFil |
| 1 |
|
vd |
|- d |
| 2 |
|
cxmet |
|- *Met |
| 3 |
2
|
crn |
|- ran *Met |
| 4 |
3
|
cuni |
|- U. ran *Met |
| 5 |
|
vf |
|- f |
| 6 |
|
cfil |
|- Fil |
| 7 |
1
|
cv |
|- d |
| 8 |
7
|
cdm |
|- dom d |
| 9 |
8
|
cdm |
|- dom dom d |
| 10 |
9 6
|
cfv |
|- ( Fil ` dom dom d ) |
| 11 |
|
vx |
|- x |
| 12 |
|
crp |
|- RR+ |
| 13 |
|
vy |
|- y |
| 14 |
5
|
cv |
|- f |
| 15 |
13
|
cv |
|- y |
| 16 |
15 15
|
cxp |
|- ( y X. y ) |
| 17 |
7 16
|
cima |
|- ( d " ( y X. y ) ) |
| 18 |
|
cc0 |
|- 0 |
| 19 |
|
cico |
|- [,) |
| 20 |
11
|
cv |
|- x |
| 21 |
18 20 19
|
co |
|- ( 0 [,) x ) |
| 22 |
17 21
|
wss |
|- ( d " ( y X. y ) ) C_ ( 0 [,) x ) |
| 23 |
22 13 14
|
wrex |
|- E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) |
| 24 |
23 11 12
|
wral |
|- A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) |
| 25 |
24 5 10
|
crab |
|- { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } |
| 26 |
1 4 25
|
cmpt |
|- ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } ) |
| 27 |
0 26
|
wceq |
|- CauFil = ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } ) |