| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccfil |
⊢ CauFil |
| 1 |
|
vd |
⊢ 𝑑 |
| 2 |
|
cxmet |
⊢ ∞Met |
| 3 |
2
|
crn |
⊢ ran ∞Met |
| 4 |
3
|
cuni |
⊢ ∪ ran ∞Met |
| 5 |
|
vf |
⊢ 𝑓 |
| 6 |
|
cfil |
⊢ Fil |
| 7 |
1
|
cv |
⊢ 𝑑 |
| 8 |
7
|
cdm |
⊢ dom 𝑑 |
| 9 |
8
|
cdm |
⊢ dom dom 𝑑 |
| 10 |
9 6
|
cfv |
⊢ ( Fil ‘ dom dom 𝑑 ) |
| 11 |
|
vx |
⊢ 𝑥 |
| 12 |
|
crp |
⊢ ℝ+ |
| 13 |
|
vy |
⊢ 𝑦 |
| 14 |
5
|
cv |
⊢ 𝑓 |
| 15 |
13
|
cv |
⊢ 𝑦 |
| 16 |
15 15
|
cxp |
⊢ ( 𝑦 × 𝑦 ) |
| 17 |
7 16
|
cima |
⊢ ( 𝑑 “ ( 𝑦 × 𝑦 ) ) |
| 18 |
|
cc0 |
⊢ 0 |
| 19 |
|
cico |
⊢ [,) |
| 20 |
11
|
cv |
⊢ 𝑥 |
| 21 |
18 20 19
|
co |
⊢ ( 0 [,) 𝑥 ) |
| 22 |
17 21
|
wss |
⊢ ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) |
| 23 |
22 13 14
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) |
| 24 |
23 11 12
|
wral |
⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) |
| 25 |
24 5 10
|
crab |
⊢ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } |
| 26 |
1 4 25
|
cmpt |
⊢ ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |
| 27 |
0 26
|
wceq |
⊢ CauFil = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |