Metamath Proof Explorer


Definition df-cld

Description: Define a function on topologies whose value is the set of closed sets of the topology. (Contributed by NM, 2-Oct-2006)

Ref Expression
Assertion df-cld
|- Clsd = ( j e. Top |-> { x e. ~P U. j | ( U. j \ x ) e. j } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccld
 |-  Clsd
1 vj
 |-  j
2 ctop
 |-  Top
3 vx
 |-  x
4 1 cv
 |-  j
5 4 cuni
 |-  U. j
6 5 cpw
 |-  ~P U. j
7 3 cv
 |-  x
8 5 7 cdif
 |-  ( U. j \ x )
9 8 4 wcel
 |-  ( U. j \ x ) e. j
10 9 3 6 crab
 |-  { x e. ~P U. j | ( U. j \ x ) e. j }
11 1 2 10 cmpt
 |-  ( j e. Top |-> { x e. ~P U. j | ( U. j \ x ) e. j } )
12 0 11 wceq
 |-  Clsd = ( j e. Top |-> { x e. ~P U. j | ( U. j \ x ) e. j } )