Step |
Hyp |
Ref |
Expression |
0 |
|
ccm |
|- C_H |
1 |
|
vx |
|- x |
2 |
|
vy |
|- y |
3 |
1
|
cv |
|- x |
4 |
|
cch |
|- CH |
5 |
3 4
|
wcel |
|- x e. CH |
6 |
2
|
cv |
|- y |
7 |
6 4
|
wcel |
|- y e. CH |
8 |
5 7
|
wa |
|- ( x e. CH /\ y e. CH ) |
9 |
3 6
|
cin |
|- ( x i^i y ) |
10 |
|
chj |
|- vH |
11 |
|
cort |
|- _|_ |
12 |
6 11
|
cfv |
|- ( _|_ ` y ) |
13 |
3 12
|
cin |
|- ( x i^i ( _|_ ` y ) ) |
14 |
9 13 10
|
co |
|- ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) |
15 |
3 14
|
wceq |
|- x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) |
16 |
8 15
|
wa |
|- ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) |
17 |
16 1 2
|
copab |
|- { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) } |
18 |
0 17
|
wceq |
|- C_H = { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) } |