Description: Define the hyperbolic cosine function (cosh). We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by David A. Wheeler, 10-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cosh | |- cosh = ( x e. CC |-> ( cos ` ( _i x. x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccosh | |- cosh |
|
| 1 | vx | |- x |
|
| 2 | cc | |- CC |
|
| 3 | ccos | |- cos |
|
| 4 | ci | |- _i |
|
| 5 | cmul | |- x. |
|
| 6 | 1 | cv | |- x |
| 7 | 4 6 5 | co | |- ( _i x. x ) |
| 8 | 7 3 | cfv | |- ( cos ` ( _i x. x ) ) |
| 9 | 1 2 8 | cmpt | |- ( x e. CC |-> ( cos ` ( _i x. x ) ) ) |
| 10 | 0 9 | wceq | |- cosh = ( x e. CC |-> ( cos ` ( _i x. x ) ) ) |