Metamath Proof Explorer


Definition df-cosh

Description: Define the hyperbolic cosine function (cosh). We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion df-cosh
|- cosh = ( x e. CC |-> ( cos ` ( _i x. x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccosh
 |-  cosh
1 vx
 |-  x
2 cc
 |-  CC
3 ccos
 |-  cos
4 ci
 |-  _i
5 cmul
 |-  x.
6 1 cv
 |-  x
7 4 6 5 co
 |-  ( _i x. x )
8 7 3 cfv
 |-  ( cos ` ( _i x. x ) )
9 1 2 8 cmpt
 |-  ( x e. CC |-> ( cos ` ( _i x. x ) ) )
10 0 9 wceq
 |-  cosh = ( x e. CC |-> ( cos ` ( _i x. x ) ) )