Metamath Proof Explorer


Definition df-cosh

Description: Define the hyperbolic cosine function (cosh). We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion df-cosh cosh = ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( i · 𝑥 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccosh cosh
1 vx 𝑥
2 cc
3 ccos cos
4 ci i
5 cmul ·
6 1 cv 𝑥
7 4 6 5 co ( i · 𝑥 )
8 7 3 cfv ( cos ‘ ( i · 𝑥 ) )
9 1 2 8 cmpt ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( i · 𝑥 ) ) )
10 0 9 wceq cosh = ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( i · 𝑥 ) ) )