Metamath Proof Explorer


Definition df-dde

Description: Define the Dirac delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018)

Ref Expression
Assertion df-dde
|- Ddelta = ( a e. ~P RR |-> if ( 0 e. a , 1 , 0 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdde
 |-  Ddelta
1 va
 |-  a
2 cr
 |-  RR
3 2 cpw
 |-  ~P RR
4 cc0
 |-  0
5 1 cv
 |-  a
6 4 5 wcel
 |-  0 e. a
7 c1
 |-  1
8 6 7 4 cif
 |-  if ( 0 e. a , 1 , 0 )
9 1 3 8 cmpt
 |-  ( a e. ~P RR |-> if ( 0 e. a , 1 , 0 ) )
10 0 9 wceq
 |-  Ddelta = ( a e. ~P RR |-> if ( 0 e. a , 1 , 0 ) )