Metamath Proof Explorer


Definition df-dde

Description: Define the Dirac delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018)

Ref Expression
Assertion df-dde δ = ( 𝑎 ∈ 𝒫 ℝ ↦ if ( 0 ∈ 𝑎 , 1 , 0 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdde δ
1 va 𝑎
2 cr
3 2 cpw 𝒫 ℝ
4 cc0 0
5 1 cv 𝑎
6 4 5 wcel 0 ∈ 𝑎
7 c1 1
8 6 7 4 cif if ( 0 ∈ 𝑎 , 1 , 0 )
9 1 3 8 cmpt ( 𝑎 ∈ 𝒫 ℝ ↦ if ( 0 ∈ 𝑎 , 1 , 0 ) )
10 0 9 wceq δ = ( 𝑎 ∈ 𝒫 ℝ ↦ if ( 0 ∈ 𝑎 , 1 , 0 ) )