| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 2 | 1 | ssex | ⊢ ( 𝐴  ⊆  ℝ  →  𝐴  ∈  V ) | 
						
							| 3 |  | elpwg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  𝒫  ℝ  ↔  𝐴  ⊆  ℝ ) ) | 
						
							| 4 | 3 | biimpar | ⊢ ( ( 𝐴  ∈  V  ∧  𝐴  ⊆  ℝ )  →  𝐴  ∈  𝒫  ℝ ) | 
						
							| 5 | 2 4 | mpancom | ⊢ ( 𝐴  ⊆  ℝ  →  𝐴  ∈  𝒫  ℝ ) | 
						
							| 6 |  | eleq2 | ⊢ ( 𝑎  =  𝐴  →  ( 0  ∈  𝑎  ↔  0  ∈  𝐴 ) ) | 
						
							| 7 | 6 | ifbid | ⊢ ( 𝑎  =  𝐴  →  if ( 0  ∈  𝑎 ,  1 ,  0 )  =  if ( 0  ∈  𝐴 ,  1 ,  0 ) ) | 
						
							| 8 |  | df-dde | ⊢ δ  =  ( 𝑎  ∈  𝒫  ℝ  ↦  if ( 0  ∈  𝑎 ,  1 ,  0 ) ) | 
						
							| 9 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 10 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 11 | 9 10 | ifex | ⊢ if ( 0  ∈  𝐴 ,  1 ,  0 )  ∈  V | 
						
							| 12 | 7 8 11 | fvmpt | ⊢ ( 𝐴  ∈  𝒫  ℝ  →  ( δ ‘ 𝐴 )  =  if ( 0  ∈  𝐴 ,  1 ,  0 ) ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝐴  ⊆  ℝ  →  ( δ ‘ 𝐴 )  =  if ( 0  ∈  𝐴 ,  1 ,  0 ) ) | 
						
							| 14 |  | iftrue | ⊢ ( 0  ∈  𝐴  →  if ( 0  ∈  𝐴 ,  1 ,  0 )  =  1 ) | 
						
							| 15 | 13 14 | sylan9eq | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  0  ∈  𝐴 )  →  ( δ ‘ 𝐴 )  =  1 ) |