| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdlat |
|- DLat |
| 1 |
|
vk |
|- k |
| 2 |
|
clat |
|- Lat |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- k |
| 5 |
4 3
|
cfv |
|- ( Base ` k ) |
| 6 |
|
vb |
|- b |
| 7 |
|
cjn |
|- join |
| 8 |
4 7
|
cfv |
|- ( join ` k ) |
| 9 |
|
vj |
|- j |
| 10 |
|
cmee |
|- meet |
| 11 |
4 10
|
cfv |
|- ( meet ` k ) |
| 12 |
|
vm |
|- m |
| 13 |
|
vx |
|- x |
| 14 |
6
|
cv |
|- b |
| 15 |
|
vy |
|- y |
| 16 |
|
vz |
|- z |
| 17 |
13
|
cv |
|- x |
| 18 |
12
|
cv |
|- m |
| 19 |
15
|
cv |
|- y |
| 20 |
9
|
cv |
|- j |
| 21 |
16
|
cv |
|- z |
| 22 |
19 21 20
|
co |
|- ( y j z ) |
| 23 |
17 22 18
|
co |
|- ( x m ( y j z ) ) |
| 24 |
17 19 18
|
co |
|- ( x m y ) |
| 25 |
17 21 18
|
co |
|- ( x m z ) |
| 26 |
24 25 20
|
co |
|- ( ( x m y ) j ( x m z ) ) |
| 27 |
23 26
|
wceq |
|- ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 28 |
27 16 14
|
wral |
|- A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 29 |
28 15 14
|
wral |
|- A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 30 |
29 13 14
|
wral |
|- A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 31 |
30 12 11
|
wsbc |
|- [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 32 |
31 9 8
|
wsbc |
|- [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 33 |
32 6 5
|
wsbc |
|- [. ( Base ` k ) / b ]. [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 34 |
33 1 2
|
crab |
|- { k e. Lat | [. ( Base ` k ) / b ]. [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) } |
| 35 |
0 34
|
wceq |
|- DLat = { k e. Lat | [. ( Base ` k ) / b ]. [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) } |