| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cedom |
|- EDomn |
| 1 |
|
vd |
|- d |
| 2 |
|
cidom |
|- IDomn |
| 3 |
|
ceuf |
|- EuclF |
| 4 |
1
|
cv |
|- d |
| 5 |
4 3
|
cfv |
|- ( EuclF ` d ) |
| 6 |
|
ve |
|- e |
| 7 |
|
cbs |
|- Base |
| 8 |
4 7
|
cfv |
|- ( Base ` d ) |
| 9 |
|
vv |
|- v |
| 10 |
6
|
cv |
|- e |
| 11 |
10
|
wfun |
|- Fun e |
| 12 |
9
|
cv |
|- v |
| 13 |
|
c0g |
|- 0g |
| 14 |
4 13
|
cfv |
|- ( 0g ` d ) |
| 15 |
14
|
csn |
|- { ( 0g ` d ) } |
| 16 |
12 15
|
cdif |
|- ( v \ { ( 0g ` d ) } ) |
| 17 |
10 16
|
cima |
|- ( e " ( v \ { ( 0g ` d ) } ) ) |
| 18 |
|
cc0 |
|- 0 |
| 19 |
|
cico |
|- [,) |
| 20 |
|
cpnf |
|- +oo |
| 21 |
18 20 19
|
co |
|- ( 0 [,) +oo ) |
| 22 |
17 21
|
wss |
|- ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) |
| 23 |
|
va |
|- a |
| 24 |
|
vb |
|- b |
| 25 |
|
vq |
|- q |
| 26 |
|
vr |
|- r |
| 27 |
23
|
cv |
|- a |
| 28 |
24
|
cv |
|- b |
| 29 |
|
cmulr |
|- .r |
| 30 |
4 29
|
cfv |
|- ( .r ` d ) |
| 31 |
25
|
cv |
|- q |
| 32 |
28 31 30
|
co |
|- ( b ( .r ` d ) q ) |
| 33 |
|
cplusg |
|- +g |
| 34 |
4 33
|
cfv |
|- ( +g ` d ) |
| 35 |
26
|
cv |
|- r |
| 36 |
32 35 34
|
co |
|- ( ( b ( .r ` d ) q ) ( +g ` d ) r ) |
| 37 |
27 36
|
wceq |
|- a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) |
| 38 |
35 14
|
wceq |
|- r = ( 0g ` d ) |
| 39 |
35 10
|
cfv |
|- ( e ` r ) |
| 40 |
|
clt |
|- < |
| 41 |
28 10
|
cfv |
|- ( e ` b ) |
| 42 |
39 41 40
|
wbr |
|- ( e ` r ) < ( e ` b ) |
| 43 |
38 42
|
wo |
|- ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) |
| 44 |
37 43
|
wa |
|- ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) |
| 45 |
44 26 12
|
wrex |
|- E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) |
| 46 |
45 25 12
|
wrex |
|- E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) |
| 47 |
46 24 16
|
wral |
|- A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) |
| 48 |
47 23 12
|
wral |
|- A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) |
| 49 |
11 22 48
|
w3a |
|- ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) |
| 50 |
49 9 8
|
wsbc |
|- [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) |
| 51 |
50 6 5
|
wsbc |
|- [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) |
| 52 |
51 1 2
|
crab |
|- { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } |
| 53 |
0 52
|
wceq |
|- EDomn = { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } |