Metamath Proof Explorer


Definition df-edom

Description: Define Euclidean Domains. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Assertion df-edom EDomn = { 𝑑 ∈ IDomn ∣ [ ( EuclF ‘ 𝑑 ) / 𝑒 ] [ ( Base ‘ 𝑑 ) / 𝑣 ] ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎𝑣𝑏 ∈ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ∃ 𝑞𝑣𝑟𝑣 ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cedom EDomn
1 vd 𝑑
2 cidom IDomn
3 ceuf EuclF
4 1 cv 𝑑
5 4 3 cfv ( EuclF ‘ 𝑑 )
6 ve 𝑒
7 cbs Base
8 4 7 cfv ( Base ‘ 𝑑 )
9 vv 𝑣
10 6 cv 𝑒
11 10 wfun Fun 𝑒
12 9 cv 𝑣
13 c0g 0g
14 4 13 cfv ( 0g𝑑 )
15 14 csn { ( 0g𝑑 ) }
16 12 15 cdif ( 𝑣 ∖ { ( 0g𝑑 ) } )
17 10 16 cima ( 𝑒 “ ( 𝑣 ∖ { ( 0g𝑑 ) } ) )
18 cc0 0
19 cico [,)
20 cpnf +∞
21 18 20 19 co ( 0 [,) +∞ )
22 17 21 wss ( 𝑒 “ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ) ⊆ ( 0 [,) +∞ )
23 va 𝑎
24 vb 𝑏
25 vq 𝑞
26 vr 𝑟
27 23 cv 𝑎
28 24 cv 𝑏
29 cmulr .r
30 4 29 cfv ( .r𝑑 )
31 25 cv 𝑞
32 28 31 30 co ( 𝑏 ( .r𝑑 ) 𝑞 )
33 cplusg +g
34 4 33 cfv ( +g𝑑 )
35 26 cv 𝑟
36 32 35 34 co ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 )
37 27 36 wceq 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 )
38 35 14 wceq 𝑟 = ( 0g𝑑 )
39 35 10 cfv ( 𝑒𝑟 )
40 clt <
41 28 10 cfv ( 𝑒𝑏 )
42 39 41 40 wbr ( 𝑒𝑟 ) < ( 𝑒𝑏 )
43 38 42 wo ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) )
44 37 43 wa ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) )
45 44 26 12 wrex 𝑟𝑣 ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) )
46 45 25 12 wrex 𝑞𝑣𝑟𝑣 ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) )
47 46 24 16 wral 𝑏 ∈ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ∃ 𝑞𝑣𝑟𝑣 ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) )
48 47 23 12 wral 𝑎𝑣𝑏 ∈ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ∃ 𝑞𝑣𝑟𝑣 ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) )
49 11 22 48 w3a ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎𝑣𝑏 ∈ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ∃ 𝑞𝑣𝑟𝑣 ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) ) )
50 49 9 8 wsbc [ ( Base ‘ 𝑑 ) / 𝑣 ] ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎𝑣𝑏 ∈ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ∃ 𝑞𝑣𝑟𝑣 ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) ) )
51 50 6 5 wsbc [ ( EuclF ‘ 𝑑 ) / 𝑒 ] [ ( Base ‘ 𝑑 ) / 𝑣 ] ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎𝑣𝑏 ∈ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ∃ 𝑞𝑣𝑟𝑣 ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) ) )
52 51 1 2 crab { 𝑑 ∈ IDomn ∣ [ ( EuclF ‘ 𝑑 ) / 𝑒 ] [ ( Base ‘ 𝑑 ) / 𝑣 ] ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎𝑣𝑏 ∈ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ∃ 𝑞𝑣𝑟𝑣 ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) ) ) }
53 0 52 wceq EDomn = { 𝑑 ∈ IDomn ∣ [ ( EuclF ‘ 𝑑 ) / 𝑒 ] [ ( Base ‘ 𝑑 ) / 𝑣 ] ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎𝑣𝑏 ∈ ( 𝑣 ∖ { ( 0g𝑑 ) } ) ∃ 𝑞𝑣𝑟𝑣 ( 𝑎 = ( ( 𝑏 ( .r𝑑 ) 𝑞 ) ( +g𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g𝑑 ) ∨ ( 𝑒𝑟 ) < ( 𝑒𝑏 ) ) ) ) }