Step |
Hyp |
Ref |
Expression |
0 |
|
cedom |
⊢ EDomn |
1 |
|
vd |
⊢ 𝑑 |
2 |
|
cidom |
⊢ IDomn |
3 |
|
ceuf |
⊢ EuclF |
4 |
1
|
cv |
⊢ 𝑑 |
5 |
4 3
|
cfv |
⊢ ( EuclF ‘ 𝑑 ) |
6 |
|
ve |
⊢ 𝑒 |
7 |
|
cbs |
⊢ Base |
8 |
4 7
|
cfv |
⊢ ( Base ‘ 𝑑 ) |
9 |
|
vv |
⊢ 𝑣 |
10 |
6
|
cv |
⊢ 𝑒 |
11 |
10
|
wfun |
⊢ Fun 𝑒 |
12 |
9
|
cv |
⊢ 𝑣 |
13 |
|
c0g |
⊢ 0g |
14 |
4 13
|
cfv |
⊢ ( 0g ‘ 𝑑 ) |
15 |
14
|
csn |
⊢ { ( 0g ‘ 𝑑 ) } |
16 |
12 15
|
cdif |
⊢ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) |
17 |
10 16
|
cima |
⊢ ( 𝑒 “ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ) |
18 |
|
cc0 |
⊢ 0 |
19 |
|
cico |
⊢ [,) |
20 |
|
cpnf |
⊢ +∞ |
21 |
18 20 19
|
co |
⊢ ( 0 [,) +∞ ) |
22 |
17 21
|
wss |
⊢ ( 𝑒 “ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) |
23 |
|
va |
⊢ 𝑎 |
24 |
|
vb |
⊢ 𝑏 |
25 |
|
vq |
⊢ 𝑞 |
26 |
|
vr |
⊢ 𝑟 |
27 |
23
|
cv |
⊢ 𝑎 |
28 |
24
|
cv |
⊢ 𝑏 |
29 |
|
cmulr |
⊢ .r |
30 |
4 29
|
cfv |
⊢ ( .r ‘ 𝑑 ) |
31 |
25
|
cv |
⊢ 𝑞 |
32 |
28 31 30
|
co |
⊢ ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) |
33 |
|
cplusg |
⊢ +g |
34 |
4 33
|
cfv |
⊢ ( +g ‘ 𝑑 ) |
35 |
26
|
cv |
⊢ 𝑟 |
36 |
32 35 34
|
co |
⊢ ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) |
37 |
27 36
|
wceq |
⊢ 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) |
38 |
35 14
|
wceq |
⊢ 𝑟 = ( 0g ‘ 𝑑 ) |
39 |
35 10
|
cfv |
⊢ ( 𝑒 ‘ 𝑟 ) |
40 |
|
clt |
⊢ < |
41 |
28 10
|
cfv |
⊢ ( 𝑒 ‘ 𝑏 ) |
42 |
39 41 40
|
wbr |
⊢ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) |
43 |
38 42
|
wo |
⊢ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) |
44 |
37 43
|
wa |
⊢ ( 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) ) |
45 |
44 26 12
|
wrex |
⊢ ∃ 𝑟 ∈ 𝑣 ( 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) ) |
46 |
45 25 12
|
wrex |
⊢ ∃ 𝑞 ∈ 𝑣 ∃ 𝑟 ∈ 𝑣 ( 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) ) |
47 |
46 24 16
|
wral |
⊢ ∀ 𝑏 ∈ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ∃ 𝑞 ∈ 𝑣 ∃ 𝑟 ∈ 𝑣 ( 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) ) |
48 |
47 23 12
|
wral |
⊢ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ∃ 𝑞 ∈ 𝑣 ∃ 𝑟 ∈ 𝑣 ( 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) ) |
49 |
11 22 48
|
w3a |
⊢ ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ∃ 𝑞 ∈ 𝑣 ∃ 𝑟 ∈ 𝑣 ( 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) ) ) |
50 |
49 9 8
|
wsbc |
⊢ [ ( Base ‘ 𝑑 ) / 𝑣 ] ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ∃ 𝑞 ∈ 𝑣 ∃ 𝑟 ∈ 𝑣 ( 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) ) ) |
51 |
50 6 5
|
wsbc |
⊢ [ ( EuclF ‘ 𝑑 ) / 𝑒 ] [ ( Base ‘ 𝑑 ) / 𝑣 ] ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ∃ 𝑞 ∈ 𝑣 ∃ 𝑟 ∈ 𝑣 ( 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) ) ) |
52 |
51 1 2
|
crab |
⊢ { 𝑑 ∈ IDomn ∣ [ ( EuclF ‘ 𝑑 ) / 𝑒 ] [ ( Base ‘ 𝑑 ) / 𝑣 ] ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ∃ 𝑞 ∈ 𝑣 ∃ 𝑟 ∈ 𝑣 ( 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) ) ) } |
53 |
0 52
|
wceq |
⊢ EDomn = { 𝑑 ∈ IDomn ∣ [ ( EuclF ‘ 𝑑 ) / 𝑒 ] [ ( Base ‘ 𝑑 ) / 𝑣 ] ( Fun 𝑒 ∧ ( 𝑒 “ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ) ⊆ ( 0 [,) +∞ ) ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ ( 𝑣 ∖ { ( 0g ‘ 𝑑 ) } ) ∃ 𝑞 ∈ 𝑣 ∃ 𝑟 ∈ 𝑣 ( 𝑎 = ( ( 𝑏 ( .r ‘ 𝑑 ) 𝑞 ) ( +g ‘ 𝑑 ) 𝑟 ) ∧ ( 𝑟 = ( 0g ‘ 𝑑 ) ∨ ( 𝑒 ‘ 𝑟 ) < ( 𝑒 ‘ 𝑏 ) ) ) ) } |