| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cefmnd |
|- EndoFMnd |
| 1 |
|
vx |
|- x |
| 2 |
|
cvv |
|- _V |
| 3 |
1
|
cv |
|- x |
| 4 |
|
cmap |
|- ^m |
| 5 |
3 3 4
|
co |
|- ( x ^m x ) |
| 6 |
|
vb |
|- b |
| 7 |
|
cbs |
|- Base |
| 8 |
|
cnx |
|- ndx |
| 9 |
8 7
|
cfv |
|- ( Base ` ndx ) |
| 10 |
6
|
cv |
|- b |
| 11 |
9 10
|
cop |
|- <. ( Base ` ndx ) , b >. |
| 12 |
|
cplusg |
|- +g |
| 13 |
8 12
|
cfv |
|- ( +g ` ndx ) |
| 14 |
|
vf |
|- f |
| 15 |
|
vg |
|- g |
| 16 |
14
|
cv |
|- f |
| 17 |
15
|
cv |
|- g |
| 18 |
16 17
|
ccom |
|- ( f o. g ) |
| 19 |
14 15 10 10 18
|
cmpo |
|- ( f e. b , g e. b |-> ( f o. g ) ) |
| 20 |
13 19
|
cop |
|- <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. |
| 21 |
|
cts |
|- TopSet |
| 22 |
8 21
|
cfv |
|- ( TopSet ` ndx ) |
| 23 |
|
cpt |
|- Xt_ |
| 24 |
3
|
cpw |
|- ~P x |
| 25 |
24
|
csn |
|- { ~P x } |
| 26 |
3 25
|
cxp |
|- ( x X. { ~P x } ) |
| 27 |
26 23
|
cfv |
|- ( Xt_ ` ( x X. { ~P x } ) ) |
| 28 |
22 27
|
cop |
|- <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. |
| 29 |
11 20 28
|
ctp |
|- { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } |
| 30 |
6 5 29
|
csb |
|- [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } |
| 31 |
1 2 30
|
cmpt |
|- ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) |
| 32 |
0 31
|
wceq |
|- EndoFMnd = ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) |