Metamath Proof Explorer


Definition df-efmnd

Description: Define the monoid of endofunctions on set x . We represent the monoid as the set of functions from x to itself ( ( x ^m x ) ) under function composition, and topologize it as a function space assuming the set is discrete. Analogous to the former definition of SymGrp , see df-symg and symgvalstruct . (Contributed by AV, 25-Jan-2024)

Ref Expression
Assertion df-efmnd Could not format assertion : No typesetting found for |- EndoFMnd = ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cefmnd Could not format EndoFMnd : No typesetting found for class EndoFMnd with typecode class
1 vx setvarx
2 cvv classV
3 1 cv setvarx
4 cmap class𝑚
5 3 3 4 co classxx
6 vb setvarb
7 cbs classBase
8 cnx classndx
9 8 7 cfv classBasendx
10 6 cv setvarb
11 9 10 cop classBasendxb
12 cplusg class+𝑔
13 8 12 cfv class+ndx
14 vf setvarf
15 vg setvarg
16 14 cv setvarf
17 15 cv setvarg
18 16 17 ccom classfg
19 14 15 10 10 18 cmpo classfb,gbfg
20 13 19 cop class+ndxfb,gbfg
21 cts classTopSet
22 8 21 cfv classTopSetndx
23 cpt class𝑡
24 3 cpw class𝒫x
25 24 csn class𝒫x
26 3 25 cxp classx×𝒫x
27 26 23 cfv class𝑡x×𝒫x
28 22 27 cop classTopSetndx𝑡x×𝒫x
29 11 20 28 ctp classBasendxb+ndxfb,gbfgTopSetndx𝑡x×𝒫x
30 6 5 29 csb classxx/bBasendxb+ndxfb,gbfgTopSetndx𝑡x×𝒫x
31 1 2 30 cmpt classxVxx/bBasendxb+ndxfb,gbfgTopSetndx𝑡x×𝒫x
32 0 31 wceq Could not format EndoFMnd = ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) : No typesetting found for wff EndoFMnd = ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) with typecode wff