Description: Define the monoid of endofunctions on set x . We represent the monoid as the set of functions from x to itself ( ( x ^m x ) ) under function composition, and topologize it as a function space assuming the set is discrete. Analogous to the former definition of SymGrp , see df-symg and symgvalstruct . (Contributed by AV, 25-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | df-efmnd | Could not format assertion : No typesetting found for |- EndoFMnd = ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cefmnd | Could not format EndoFMnd : No typesetting found for class EndoFMnd with typecode class | |
1 | vx | |
|
2 | cvv | |
|
3 | 1 | cv | |
4 | cmap | |
|
5 | 3 3 4 | co | |
6 | vb | |
|
7 | cbs | |
|
8 | cnx | |
|
9 | 8 7 | cfv | |
10 | 6 | cv | |
11 | 9 10 | cop | |
12 | cplusg | |
|
13 | 8 12 | cfv | |
14 | vf | |
|
15 | vg | |
|
16 | 14 | cv | |
17 | 15 | cv | |
18 | 16 17 | ccom | |
19 | 14 15 10 10 18 | cmpo | |
20 | 13 19 | cop | |
21 | cts | |
|
22 | 8 21 | cfv | |
23 | cpt | |
|
24 | 3 | cpw | |
25 | 24 | csn | |
26 | 3 25 | cxp | |
27 | 26 23 | cfv | |
28 | 22 27 | cop | |
29 | 11 20 28 | ctp | |
30 | 6 5 29 | csb | |
31 | 1 2 30 | cmpt | |
32 | 0 31 | wceq | Could not format EndoFMnd = ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) : No typesetting found for wff EndoFMnd = ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) with typecode wff |