| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cfppr |  |-  FPPr | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cn |  |-  NN | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | cuz |  |-  ZZ>= | 
						
							| 5 |  | c4 |  |-  4 | 
						
							| 6 | 5 4 | cfv |  |-  ( ZZ>= ` 4 ) | 
						
							| 7 | 3 | cv |  |-  x | 
						
							| 8 |  | cprime |  |-  Prime | 
						
							| 9 | 7 8 | wnel |  |-  x e/ Prime | 
						
							| 10 |  | cdvds |  |-  || | 
						
							| 11 | 1 | cv |  |-  n | 
						
							| 12 |  | cexp |  |-  ^ | 
						
							| 13 |  | cmin |  |-  - | 
						
							| 14 |  | c1 |  |-  1 | 
						
							| 15 | 7 14 13 | co |  |-  ( x - 1 ) | 
						
							| 16 | 11 15 12 | co |  |-  ( n ^ ( x - 1 ) ) | 
						
							| 17 | 16 14 13 | co |  |-  ( ( n ^ ( x - 1 ) ) - 1 ) | 
						
							| 18 | 7 17 10 | wbr |  |-  x || ( ( n ^ ( x - 1 ) ) - 1 ) | 
						
							| 19 | 9 18 | wa |  |-  ( x e/ Prime /\ x || ( ( n ^ ( x - 1 ) ) - 1 ) ) | 
						
							| 20 | 19 3 6 | crab |  |-  { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ x || ( ( n ^ ( x - 1 ) ) - 1 ) ) } | 
						
							| 21 | 1 2 20 | cmpt |  |-  ( n e. NN |-> { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ x || ( ( n ^ ( x - 1 ) ) - 1 ) ) } ) | 
						
							| 22 | 0 21 | wceq |  |-  FPPr = ( n e. NN |-> { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ x || ( ( n ^ ( x - 1 ) ) - 1 ) ) } ) |