| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfppr |
|- FPPr |
| 1 |
|
vn |
|- n |
| 2 |
|
cn |
|- NN |
| 3 |
|
vx |
|- x |
| 4 |
|
cuz |
|- ZZ>= |
| 5 |
|
c4 |
|- 4 |
| 6 |
5 4
|
cfv |
|- ( ZZ>= ` 4 ) |
| 7 |
3
|
cv |
|- x |
| 8 |
|
cprime |
|- Prime |
| 9 |
7 8
|
wnel |
|- x e/ Prime |
| 10 |
|
cdvds |
|- || |
| 11 |
1
|
cv |
|- n |
| 12 |
|
cexp |
|- ^ |
| 13 |
|
cmin |
|- - |
| 14 |
|
c1 |
|- 1 |
| 15 |
7 14 13
|
co |
|- ( x - 1 ) |
| 16 |
11 15 12
|
co |
|- ( n ^ ( x - 1 ) ) |
| 17 |
16 14 13
|
co |
|- ( ( n ^ ( x - 1 ) ) - 1 ) |
| 18 |
7 17 10
|
wbr |
|- x || ( ( n ^ ( x - 1 ) ) - 1 ) |
| 19 |
9 18
|
wa |
|- ( x e/ Prime /\ x || ( ( n ^ ( x - 1 ) ) - 1 ) ) |
| 20 |
19 3 6
|
crab |
|- { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ x || ( ( n ^ ( x - 1 ) ) - 1 ) ) } |
| 21 |
1 2 20
|
cmpt |
|- ( n e. NN |-> { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ x || ( ( n ^ ( x - 1 ) ) - 1 ) ) } ) |
| 22 |
0 21
|
wceq |
|- FPPr = ( n e. NN |-> { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ x || ( ( n ^ ( x - 1 ) ) - 1 ) ) } ) |