Metamath Proof Explorer


Definition df-fppr

Description: Define the function that maps a positive integer to the set ofFermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use x e. NN /\ x e/ Prime because x = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023)

Ref Expression
Assertion df-fppr FPPr=nx4|xxnx11

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfppr classFPPr
1 vn setvarn
2 cn class
3 vx setvarx
4 cuz class
5 c4 class4
6 5 4 cfv class4
7 3 cv setvarx
8 cprime class
9 7 8 wnel wffx
10 cdvds class
11 1 cv setvarn
12 cexp class^
13 cmin class
14 c1 class1
15 7 14 13 co classx1
16 11 15 12 co classnx1
17 16 14 13 co classnx11
18 7 17 10 wbr wffxnx11
19 9 18 wa wffxxnx11
20 19 3 6 crab classx4|xxnx11
21 1 2 20 cmpt classnx4|xxnx11
22 0 21 wceq wffFPPr=nx4|xxnx11