Metamath Proof Explorer


Theorem fppr

Description: The set of Fermat pseudoprimes to the base N . (Contributed by AV, 29-May-2023)

Ref Expression
Assertion fppr NFPPrN=x4|xxNx11

Proof

Step Hyp Ref Expression
1 oveq1 n=Nnx1=Nx1
2 1 oveq1d n=Nnx11=Nx11
3 2 breq2d n=Nxnx11xNx11
4 3 anbi2d n=Nxxnx11xxNx11
5 4 rabbidv n=Nx4|xxnx11=x4|xxNx11
6 df-fppr FPPr=nx4|xxnx11
7 fvex 4V
8 7 rabex x4|xxNx11V
9 5 6 8 fvmpt NFPPrN=x4|xxNx11