Metamath Proof Explorer


Theorem fpprmod

Description: The set of Fermat pseudoprimes to the base N , expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023)

Ref Expression
Assertion fpprmod N FPPr N = x 4 | x N x 1 mod x = 1

Proof

Step Hyp Ref Expression
1 fppr N FPPr N = x 4 | x x N x 1 1
2 eluz4eluz2 x 4 x 2
3 nnz N N
4 eluz4nn x 4 x
5 nnm1nn0 x x 1 0
6 4 5 syl x 4 x 1 0
7 zexpcl N x 1 0 N x 1
8 3 6 7 syl2an N x 4 N x 1
9 modm1div x 2 N x 1 N x 1 mod x = 1 x N x 1 1
10 2 8 9 syl2an2 N x 4 N x 1 mod x = 1 x N x 1 1
11 10 bicomd N x 4 x N x 1 1 N x 1 mod x = 1
12 11 anbi2d N x 4 x x N x 1 1 x N x 1 mod x = 1
13 12 rabbidva N x 4 | x x N x 1 1 = x 4 | x N x 1 mod x = 1
14 1 13 eqtrd N FPPr N = x 4 | x N x 1 mod x = 1