Metamath Proof Explorer


Theorem fpprmod

Description: The set of Fermat pseudoprimes to the base N , expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023)

Ref Expression
Assertion fpprmod NFPPrN=x4|xNx1modx=1

Proof

Step Hyp Ref Expression
1 fppr NFPPrN=x4|xxNx11
2 eluz4eluz2 x4x2
3 nnz NN
4 eluz4nn x4x
5 nnm1nn0 xx10
6 4 5 syl x4x10
7 zexpcl Nx10Nx1
8 3 6 7 syl2an Nx4Nx1
9 modm1div x2Nx1Nx1modx=1xNx11
10 2 8 9 syl2an2 Nx4Nx1modx=1xNx11
11 10 bicomd Nx4xNx11Nx1modx=1
12 11 anbi2d Nx4xxNx11xNx1modx=1
13 12 rabbidva Nx4|xxNx11=x4|xNx1modx=1
14 1 13 eqtrd NFPPrN=x4|xNx1modx=1