Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension 2)
Fermat pseudoprimes
fpprel
Next ⟩
fpprbasnn
Metamath Proof Explorer
Ascii
Unicode
Theorem
fpprel
Description:
A Fermat pseudoprime to the base
N
.
(Contributed by
AV
, 30-May-2023)
Ref
Expression
Assertion
fpprel
⊢
N
∈
ℕ
→
X
∈
FPPr
⁡
N
↔
X
∈
ℤ
≥
4
∧
X
∉
ℙ
∧
N
X
−
1
mod
X
=
1
Proof
Step
Hyp
Ref
Expression
1
fpprmod
⊢
N
∈
ℕ
→
FPPr
⁡
N
=
x
∈
ℤ
≥
4
|
x
∉
ℙ
∧
N
x
−
1
mod
x
=
1
2
1
eleq2d
⊢
N
∈
ℕ
→
X
∈
FPPr
⁡
N
↔
X
∈
x
∈
ℤ
≥
4
|
x
∉
ℙ
∧
N
x
−
1
mod
x
=
1
3
neleq1
⊢
x
=
X
→
x
∉
ℙ
↔
X
∉
ℙ
4
oveq1
⊢
x
=
X
→
x
−
1
=
X
−
1
5
4
oveq2d
⊢
x
=
X
→
N
x
−
1
=
N
X
−
1
6
id
⊢
x
=
X
→
x
=
X
7
5
6
oveq12d
⊢
x
=
X
→
N
x
−
1
mod
x
=
N
X
−
1
mod
X
8
7
eqeq1d
⊢
x
=
X
→
N
x
−
1
mod
x
=
1
↔
N
X
−
1
mod
X
=
1
9
3
8
anbi12d
⊢
x
=
X
→
x
∉
ℙ
∧
N
x
−
1
mod
x
=
1
↔
X
∉
ℙ
∧
N
X
−
1
mod
X
=
1
10
9
elrab
⊢
X
∈
x
∈
ℤ
≥
4
|
x
∉
ℙ
∧
N
x
−
1
mod
x
=
1
↔
X
∈
ℤ
≥
4
∧
X
∉
ℙ
∧
N
X
−
1
mod
X
=
1
11
2
10
bitrdi
⊢
N
∈
ℕ
→
X
∈
FPPr
⁡
N
↔
X
∈
ℤ
≥
4
∧
X
∉
ℙ
∧
N
X
−
1
mod
X
=
1
12
3anass
⊢
X
∈
ℤ
≥
4
∧
X
∉
ℙ
∧
N
X
−
1
mod
X
=
1
↔
X
∈
ℤ
≥
4
∧
X
∉
ℙ
∧
N
X
−
1
mod
X
=
1
13
11
12
bitr4di
⊢
N
∈
ℕ
→
X
∈
FPPr
⁡
N
↔
X
∈
ℤ
≥
4
∧
X
∉
ℙ
∧
N
X
−
1
mod
X
=
1