Metamath Proof Explorer


Theorem fpprbasnn

Description: The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023)

Ref Expression
Assertion fpprbasnn X FPPr N N

Proof

Step Hyp Ref Expression
1 ax-1 N X FPPr N N
2 df-fppr FPPr = n x 4 | x x n x 1 1
3 2 fvmptndm ¬ N FPPr N =
4 eleq2 FPPr N = X FPPr N X
5 noel ¬ X
6 5 pm2.21i X N
7 4 6 syl6bi FPPr N = X FPPr N N
8 3 7 syl ¬ N X FPPr N N
9 1 8 pm2.61i X FPPr N N