| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1 |  |-  ( N e. NN -> ( X e. ( FPPr ` N ) -> N e. NN ) ) | 
						
							| 2 |  | df-fppr |  |-  FPPr = ( n e. NN |-> { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ x || ( ( n ^ ( x - 1 ) ) - 1 ) ) } ) | 
						
							| 3 | 2 | fvmptndm |  |-  ( -. N e. NN -> ( FPPr ` N ) = (/) ) | 
						
							| 4 |  | eleq2 |  |-  ( ( FPPr ` N ) = (/) -> ( X e. ( FPPr ` N ) <-> X e. (/) ) ) | 
						
							| 5 |  | noel |  |-  -. X e. (/) | 
						
							| 6 | 5 | pm2.21i |  |-  ( X e. (/) -> N e. NN ) | 
						
							| 7 | 4 6 | biimtrdi |  |-  ( ( FPPr ` N ) = (/) -> ( X e. ( FPPr ` N ) -> N e. NN ) ) | 
						
							| 8 | 3 7 | syl |  |-  ( -. N e. NN -> ( X e. ( FPPr ` N ) -> N e. NN ) ) | 
						
							| 9 | 1 8 | pm2.61i |  |-  ( X e. ( FPPr ` N ) -> N e. NN ) |