| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fpprmod |  |-  ( N e. NN -> ( FPPr ` N ) = { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) } ) | 
						
							| 2 | 1 | eleq2d |  |-  ( N e. NN -> ( X e. ( FPPr ` N ) <-> X e. { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) } ) ) | 
						
							| 3 |  | neleq1 |  |-  ( x = X -> ( x e/ Prime <-> X e/ Prime ) ) | 
						
							| 4 |  | oveq1 |  |-  ( x = X -> ( x - 1 ) = ( X - 1 ) ) | 
						
							| 5 | 4 | oveq2d |  |-  ( x = X -> ( N ^ ( x - 1 ) ) = ( N ^ ( X - 1 ) ) ) | 
						
							| 6 |  | id |  |-  ( x = X -> x = X ) | 
						
							| 7 | 5 6 | oveq12d |  |-  ( x = X -> ( ( N ^ ( x - 1 ) ) mod x ) = ( ( N ^ ( X - 1 ) ) mod X ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( x = X -> ( ( ( N ^ ( x - 1 ) ) mod x ) = 1 <-> ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) | 
						
							| 9 | 3 8 | anbi12d |  |-  ( x = X -> ( ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) <-> ( X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) | 
						
							| 10 | 9 | elrab |  |-  ( X e. { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) } <-> ( X e. ( ZZ>= ` 4 ) /\ ( X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) | 
						
							| 11 | 2 10 | bitrdi |  |-  ( N e. NN -> ( X e. ( FPPr ` N ) <-> ( X e. ( ZZ>= ` 4 ) /\ ( X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) ) | 
						
							| 12 |  | 3anass |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) <-> ( X e. ( ZZ>= ` 4 ) /\ ( X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) | 
						
							| 13 | 11 12 | bitr4di |  |-  ( N e. NN -> ( X e. ( FPPr ` N ) <-> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) |