Step |
Hyp |
Ref |
Expression |
1 |
|
fpprmod |
|- ( N e. NN -> ( FPPr ` N ) = { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) } ) |
2 |
1
|
eleq2d |
|- ( N e. NN -> ( X e. ( FPPr ` N ) <-> X e. { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) } ) ) |
3 |
|
neleq1 |
|- ( x = X -> ( x e/ Prime <-> X e/ Prime ) ) |
4 |
|
oveq1 |
|- ( x = X -> ( x - 1 ) = ( X - 1 ) ) |
5 |
4
|
oveq2d |
|- ( x = X -> ( N ^ ( x - 1 ) ) = ( N ^ ( X - 1 ) ) ) |
6 |
|
id |
|- ( x = X -> x = X ) |
7 |
5 6
|
oveq12d |
|- ( x = X -> ( ( N ^ ( x - 1 ) ) mod x ) = ( ( N ^ ( X - 1 ) ) mod X ) ) |
8 |
7
|
eqeq1d |
|- ( x = X -> ( ( ( N ^ ( x - 1 ) ) mod x ) = 1 <-> ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) |
9 |
3 8
|
anbi12d |
|- ( x = X -> ( ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) <-> ( X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) |
10 |
9
|
elrab |
|- ( X e. { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) } <-> ( X e. ( ZZ>= ` 4 ) /\ ( X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) |
11 |
2 10
|
bitrdi |
|- ( N e. NN -> ( X e. ( FPPr ` N ) <-> ( X e. ( ZZ>= ` 4 ) /\ ( X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) ) |
12 |
|
3anass |
|- ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) <-> ( X e. ( ZZ>= ` 4 ) /\ ( X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) |
13 |
11 12
|
bitr4di |
|- ( N e. NN -> ( X e. ( FPPr ` N ) <-> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) |