| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fppr |  |-  ( N e. NN -> ( FPPr ` N ) = { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ x || ( ( N ^ ( x - 1 ) ) - 1 ) ) } ) | 
						
							| 2 |  | eluz4eluz2 |  |-  ( x e. ( ZZ>= ` 4 ) -> x e. ( ZZ>= ` 2 ) ) | 
						
							| 3 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 4 |  | eluz4nn |  |-  ( x e. ( ZZ>= ` 4 ) -> x e. NN ) | 
						
							| 5 |  | nnm1nn0 |  |-  ( x e. NN -> ( x - 1 ) e. NN0 ) | 
						
							| 6 | 4 5 | syl |  |-  ( x e. ( ZZ>= ` 4 ) -> ( x - 1 ) e. NN0 ) | 
						
							| 7 |  | zexpcl |  |-  ( ( N e. ZZ /\ ( x - 1 ) e. NN0 ) -> ( N ^ ( x - 1 ) ) e. ZZ ) | 
						
							| 8 | 3 6 7 | syl2an |  |-  ( ( N e. NN /\ x e. ( ZZ>= ` 4 ) ) -> ( N ^ ( x - 1 ) ) e. ZZ ) | 
						
							| 9 |  | modm1div |  |-  ( ( x e. ( ZZ>= ` 2 ) /\ ( N ^ ( x - 1 ) ) e. ZZ ) -> ( ( ( N ^ ( x - 1 ) ) mod x ) = 1 <-> x || ( ( N ^ ( x - 1 ) ) - 1 ) ) ) | 
						
							| 10 | 2 8 9 | syl2an2 |  |-  ( ( N e. NN /\ x e. ( ZZ>= ` 4 ) ) -> ( ( ( N ^ ( x - 1 ) ) mod x ) = 1 <-> x || ( ( N ^ ( x - 1 ) ) - 1 ) ) ) | 
						
							| 11 | 10 | bicomd |  |-  ( ( N e. NN /\ x e. ( ZZ>= ` 4 ) ) -> ( x || ( ( N ^ ( x - 1 ) ) - 1 ) <-> ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) ) | 
						
							| 12 | 11 | anbi2d |  |-  ( ( N e. NN /\ x e. ( ZZ>= ` 4 ) ) -> ( ( x e/ Prime /\ x || ( ( N ^ ( x - 1 ) ) - 1 ) ) <-> ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) ) ) | 
						
							| 13 | 12 | rabbidva |  |-  ( N e. NN -> { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ x || ( ( N ^ ( x - 1 ) ) - 1 ) ) } = { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) } ) | 
						
							| 14 | 1 13 | eqtrd |  |-  ( N e. NN -> ( FPPr ` N ) = { x e. ( ZZ>= ` 4 ) | ( x e/ Prime /\ ( ( N ^ ( x - 1 ) ) mod x ) = 1 ) } ) |