Description: Define the field of fractions of a given integral domain. (Contributed by Thierry Arnoux, 26-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-frac | |- Frac = ( r e. _V |-> ( r RLocal ( RLReg ` r ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cfrac | |- Frac | |
| 1 | vr | |- r | |
| 2 | cvv | |- _V | |
| 3 | 1 | cv | |- r | 
| 4 | crloc | |- RLocal | |
| 5 | crlreg | |- RLReg | |
| 6 | 3 5 | cfv | |- ( RLReg ` r ) | 
| 7 | 3 6 4 | co | |- ( r RLocal ( RLReg ` r ) ) | 
| 8 | 1 2 7 | cmpt | |- ( r e. _V |-> ( r RLocal ( RLReg ` r ) ) ) | 
| 9 | 0 8 | wceq | |- Frac = ( r e. _V |-> ( r RLocal ( RLReg ` r ) ) ) |