| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-frac |  |-  Frac = ( r e. _V |-> ( r RLocal ( RLReg ` r ) ) ) | 
						
							| 2 |  | id |  |-  ( r = R -> r = R ) | 
						
							| 3 |  | fveq2 |  |-  ( r = R -> ( RLReg ` r ) = ( RLReg ` R ) ) | 
						
							| 4 | 2 3 | oveq12d |  |-  ( r = R -> ( r RLocal ( RLReg ` r ) ) = ( R RLocal ( RLReg ` R ) ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( R e. _V /\ r = R ) -> ( r RLocal ( RLReg ` r ) ) = ( R RLocal ( RLReg ` R ) ) ) | 
						
							| 6 |  | id |  |-  ( R e. _V -> R e. _V ) | 
						
							| 7 |  | ovexd |  |-  ( R e. _V -> ( R RLocal ( RLReg ` R ) ) e. _V ) | 
						
							| 8 | 1 5 6 7 | fvmptd2 |  |-  ( R e. _V -> ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) ) | 
						
							| 9 |  | fvprc |  |-  ( -. R e. _V -> ( Frac ` R ) = (/) ) | 
						
							| 10 |  | reldmrloc |  |-  Rel dom RLocal | 
						
							| 11 | 10 | ovprc1 |  |-  ( -. R e. _V -> ( R RLocal ( RLReg ` R ) ) = (/) ) | 
						
							| 12 | 9 11 | eqtr4d |  |-  ( -. R e. _V -> ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) ) | 
						
							| 13 | 8 12 | pm2.61i |  |-  ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) |