Metamath Proof Explorer


Theorem fracval

Description: Value of the field of fractions. (Contributed by Thierry Arnoux, 5-May-2025)

Ref Expression
Assertion fracval Frac R = R RLocal RLReg R

Proof

Step Hyp Ref Expression
1 df-frac Frac = r V r RLocal RLReg r
2 id r = R r = R
3 fveq2 r = R RLReg r = RLReg R
4 2 3 oveq12d r = R r RLocal RLReg r = R RLocal RLReg R
5 4 adantl R V r = R r RLocal RLReg r = R RLocal RLReg R
6 id R V R V
7 ovexd R V R RLocal RLReg R V
8 1 5 6 7 fvmptd2 R V Frac R = R RLocal RLReg R
9 fvprc ¬ R V Frac R =
10 reldmrloc Rel dom RLocal
11 10 ovprc1 ¬ R V R RLocal RLReg R =
12 9 11 eqtr4d ¬ R V Frac R = R RLocal RLReg R
13 8 12 pm2.61i Frac R = R RLocal RLReg R