Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Field of fractions
fracval
Next ⟩
fracbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
fracval
Description:
Value of the field of fractions.
(Contributed by
Thierry Arnoux
, 5-May-2025)
Ref
Expression
Assertion
fracval
⊢
Frac
⁡
R
=
R
RLocal
RLReg
⁡
R
Proof
Step
Hyp
Ref
Expression
1
df-frac
⊢
Frac
=
r
∈
V
⟼
r
RLocal
RLReg
⁡
r
2
id
⊢
r
=
R
→
r
=
R
3
fveq2
⊢
r
=
R
→
RLReg
⁡
r
=
RLReg
⁡
R
4
2
3
oveq12d
⊢
r
=
R
→
r
RLocal
RLReg
⁡
r
=
R
RLocal
RLReg
⁡
R
5
4
adantl
⊢
R
∈
V
∧
r
=
R
→
r
RLocal
RLReg
⁡
r
=
R
RLocal
RLReg
⁡
R
6
id
⊢
R
∈
V
→
R
∈
V
7
ovexd
⊢
R
∈
V
→
R
RLocal
RLReg
⁡
R
∈
V
8
1
5
6
7
fvmptd2
⊢
R
∈
V
→
Frac
⁡
R
=
R
RLocal
RLReg
⁡
R
9
fvprc
⊢
¬
R
∈
V
→
Frac
⁡
R
=
∅
10
reldmrloc
⊢
Rel
⁡
dom
⁡
RLocal
11
10
ovprc1
⊢
¬
R
∈
V
→
R
RLocal
RLReg
⁡
R
=
∅
12
9
11
eqtr4d
⊢
¬
R
∈
V
→
Frac
⁡
R
=
R
RLocal
RLReg
⁡
R
13
8
12
pm2.61i
⊢
Frac
⁡
R
=
R
RLocal
RLReg
⁡
R