| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-frac | ⊢  Frac   =  ( 𝑟  ∈  V  ↦  ( 𝑟  RLocal  ( RLReg ‘ 𝑟 ) ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑟  =  𝑅  →  𝑟  =  𝑅 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( RLReg ‘ 𝑟 )  =  ( RLReg ‘ 𝑅 ) ) | 
						
							| 4 | 2 3 | oveq12d | ⊢ ( 𝑟  =  𝑅  →  ( 𝑟  RLocal  ( RLReg ‘ 𝑟 ) )  =  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑅  ∈  V  ∧  𝑟  =  𝑅 )  →  ( 𝑟  RLocal  ( RLReg ‘ 𝑟 ) )  =  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) ) ) | 
						
							| 6 |  | id | ⊢ ( 𝑅  ∈  V  →  𝑅  ∈  V ) | 
						
							| 7 |  | ovexd | ⊢ ( 𝑅  ∈  V  →  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) )  ∈  V ) | 
						
							| 8 | 1 5 6 7 | fvmptd2 | ⊢ ( 𝑅  ∈  V  →  (  Frac  ‘ 𝑅 )  =  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) ) ) | 
						
							| 9 |  | fvprc | ⊢ ( ¬  𝑅  ∈  V  →  (  Frac  ‘ 𝑅 )  =  ∅ ) | 
						
							| 10 |  | reldmrloc | ⊢ Rel  dom   RLocal | 
						
							| 11 | 10 | ovprc1 | ⊢ ( ¬  𝑅  ∈  V  →  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) )  =  ∅ ) | 
						
							| 12 | 9 11 | eqtr4d | ⊢ ( ¬  𝑅  ∈  V  →  (  Frac  ‘ 𝑅 )  =  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) ) ) | 
						
							| 13 | 8 12 | pm2.61i | ⊢ (  Frac  ‘ 𝑅 )  =  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) ) |